Skip to main content
Log in

High-rate reactive magnetron sputtering of zirconia films for laser optics applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZrO2 exhibits low optical absorption in the near-UV range and is one of the highest laser-induced damage threshold (LIDT) materials; it is, therefore, very attractive for laser optics applications. This paper reports explorations of reactive sputtering technology for deposition of ZrO2 films with low extinction coefficient k values in the UV spectrum region at low substrate temperature. A high deposition rate (64 % of the pure metal rate) process is obtained by employing active feedback reactive gas control which creates a stable and repeatable deposition processes in the transition region. Substrate heating at 200 °C was found to have no significant effect on the optical ZrO2 film properties. The addition of nitrogen to a closed-loop controlled process was found to have mostly negative effects in terms of deposition rate and optical properties. Open-loop O2 gas-regulated ZrO2 film deposition is slow and requires elevated (200 °C) substrate temperature or post-deposition annealing to reduce absorption losses. Refractive indices of the films were distributed in the range n = 2.05–2.20 at 1,000 nm and extinction coefficients were in the range k = 0.6 × 10−4 and 4.8 × 10−3 at 350 nm. X-ray diffraction analysis showed crystalline ZrO2 films consisted of monoclinic + tetragonal phases when produced in Ar/O2 atmosphere and monoclinic + rhombohedral or a single rhombohedral phase when produced in Ar/O2 + N2. Optical and physical properties of the ZrO2 layers produced in this study are suitable for high-power laser applications in the near-UV range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Abromavicius, R. Buzelis, R. Drazdys, K. Juskevicius, S. Kicas, T. Tolenis, J. Mirauskas, M. Sciuka, V. Sirutkaitis, A. Melninkaitis, Lith. J. Phys. 51, 303 (2011)

    Article  Google Scholar 

  2. A. Melninkaitis, D. Mikšys, V. Sirutkaitis, G. Abromavičius, R. Buzelis, R. Drazdys, Proc. SPIE 6596, 65961I (2006)

    Article  Google Scholar 

  3. G. Abromavicius, R. Buzelis, R. Drazdys, A. Melninkaitis, V. Sirutkaitis, Proc. SPIE 6720, 67200Y (2007)

    Article  Google Scholar 

  4. X. Fu, A. Melnikaitis, L. Gallais, S. Kicas, R. Drazdys, V. Sirutkaitis, M. Commandré, Opt. Express 20(23), 26089 (2012)

    Article  ADS  Google Scholar 

  5. B. Mangote, L. Gallais, M. Zerrad, M. Commandré, L.H. Gao, F. Lemarchand, M. Lequime, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kicas, T. Tolenis, R. Drazdys, M. Mende, L. Jensen, H. Ehlers, D. Ristau, Proc. SPIE 8168, 816815 (2011)

    Article  Google Scholar 

  6. K. Starke, L.O. Jensen, M. Jupé, D. Ristau, G. Abromavicius, K. Juskevicius, R. Buzelis, R. Drazdys, Proc. SPIE 7504(1), 75040B (2009)

    Article  ADS  Google Scholar 

  7. A. Melninkaitis, T. Tolenis, L. Mazule, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kicas, R. Drazdys, Appl. Opt. 50(9), C188 (2011)

    Article  Google Scholar 

  8. A. Melninkaitis, D. Mikšys, T. Balčiūnas, V. Sirutkaitis, A. Skrebutėnas, R. Buzelis, R. Drazdys, G. Abromavičius, Proc. SPIE 5991, 59911B (2005)

    Article  Google Scholar 

  9. D. Zhang, J. Shao, Y. Zhao, S. Fan, R. Hong, Z. Fan, J. Vac. Sci. Technol. A 23(1), 197 (2005)

    Article  ADS  Google Scholar 

  10. J. Ciosek, W. Paszkowicz, P. Pankowski, J. Firak, U. Stanislawek, Z. Patron, Vacuum 72(2), 135 (2003)

    Article  Google Scholar 

  11. D.R. McKenzie, D.J.H. Cockayne, M.G. Sceats, P.J. Martin, W.G. Sainty, R.P. Netterfield, J. Mater. Sci. 22(10), 3725 (1987)

    Article  ADS  Google Scholar 

  12. T. Koch, P. Ziemann, Thin Solid Films 303(1–2), 122 (1997)

    Article  ADS  Google Scholar 

  13. N.K. Huang, H. Kheyrandish, J.S. Colligon, Phys. Status Solidi A 132(2), 405 (1992)

    Article  ADS  Google Scholar 

  14. S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, A. Wokaun, Acta Mater. 59(6), 2330 (2011)

    Article  Google Scholar 

  15. K. Koski, J. Hölsä, P. Juliet, Surf. Coat. Technol. 120–121, 303 (1999)

    Article  Google Scholar 

  16. D.H. Kuo, C.H. Chien, Thin Solid Films 429(1–2), 40 (2003)

    Article  ADS  Google Scholar 

  17. J. Park, J.K. Heo, Y.C. Kang, B. Kor, Chem. Soc. 31(2), 397 (2010)

    Google Scholar 

  18. L.-M. Chen, Y.-S. Lai, J.S. Chen, Thin Solid Films 515(7–8), 3724 (2007)

    Article  ADS  Google Scholar 

  19. S. Ben Amor, B. Rogier, G. Baud, M. Jacquet, M. Nardin, Mater. Sci. Eng. B 57/1, 28 (1998)

    Google Scholar 

  20. M. Audronis, V. Bellido-Gonzalez, B. Daniel, Surf. Coat. Technol. 204(14), 2159 (2010)

    Article  Google Scholar 

  21. S. Venkataraj, O. Kappertz, H. Weis, R. Drese, R. Jayavel, M. Wuttig, J. Appl. Phys. 92(7), 3599 (2002)

    Article  ADS  Google Scholar 

  22. E. Hollands, D.S. Campbell, J. Mater. Sci. 3(5), 544 (1968)

    Article  ADS  Google Scholar 

  23. M. Scherer, J. Schmitt, R. Latz, M. Schanz, 38th National Symposium of the American Vacuum Society, AVS, Seattle, Washington (USA), 1992, p. 1772

  24. S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, F. Milde, Surf. Coat. Technol. 61(1-3), 331 (1993)

    Article  Google Scholar 

  25. R. McMahon, J. Affinito, R.R. Parsons, J. Vac. Sci. Technol. 20(3), 376 (1982)

    Article  ADS  Google Scholar 

  26. A.A. Voevodin, P. Stevenson, C. Rebholz, J.M. Schneider, A. Matthews, Vacuum 46(7), 723 (1995)

    Article  Google Scholar 

  27. S. Schiller, U. Heisig, C. Korndörfer, G. Beister, J. Reschke, K. Steinfelder, J. Strümpfel, Surf. Coat. Technol. 33, 405 (1987)

    Article  Google Scholar 

  28. J. Affinito, R.R. Parsons, J. Vac. Sci. Technol. A 2(3), 1275 (1984)

    Article  ADS  Google Scholar 

  29. M.S. Wong, W.J. Chia, P. Yashar, J.M. Schneider, W.D. Sproul, S.A. Barnett, Surf. Coat. Technol. 86–87, Part 1/0 381 (1996)

  30. S. Zhao, F. Ma, Z. Song, K. Xu, Opt. Mater. 30(6), 910 (2008)

    Article  ADS  Google Scholar 

  31. S. Venkataraj, O. Kappertz, R. Jayavel, M. Wuttig, J. Appl. Phys. 92(5), 2461 (2002)

    Article  ADS  Google Scholar 

  32. D. Severin, K. Sarakinos, O. Kappertz, A. Pflug, M. Wuttig, J. Appl. Phys. 103(8), 083306 (2008)

    Article  ADS  Google Scholar 

  33. G. Gottardi, N. Laidani, V. Micheli, R. Bartali, M. Anderle, Surf. Coat. Technol. 202(11), 2332 (2008)

    Article  Google Scholar 

  34. Y. Liu, A. Ishihara, S. Mitsushima, K. Ota, Electrochim. Acta 55(3), 1239 (2010)

    Article  Google Scholar 

  35. OptiLayer, Thin Film Softwere,OptiChar v8.85, http://www.optilayer.com/products-and-services/optichar

  36. M.M. Yang, T.M. Reith, C.J. Lin, J. Vac. Sci. Technol. A 8(6), 3925 (1990)

    Article  ADS  Google Scholar 

  37. F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, P. Goudeau, J.P. Rivière, Thin Solid Films 469–470, 11 (2004)

    Article  Google Scholar 

  38. R. Rujkorakarn, J.R. Sites, J. Vac. Sci. Technol. A 4(3), 568 (1986)

    Article  ADS  Google Scholar 

  39. W. Jin, C. Jin, L. Liu, H. Zhu, H. Yang, Proc. SPIE 6624, 66241A (2007)

    Article  Google Scholar 

  40. P.J. Martin, R.P. Netterfield, W.G. Sainty, J. Appl. Phys. 55(1), 235 (1984)

    Article  ADS  Google Scholar 

  41. H.J. Cho, C.K. Hwangbo, Appl. Opt. 35(28), 5545 (1996)

    Article  ADS  Google Scholar 

  42. H.O. Sankur, W. Gunning, Appl. Opt. 28(14), 2806 (1989)

    Article  ADS  Google Scholar 

  43. D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, R. De Gryse, J. Appl. Phys. 101(1), 013301 (2007)

    Article  ADS  Google Scholar 

  44. J.A. Thornton, Annu. Rev. Mater. Sci. +7/1, 239 (1977)

    Google Scholar 

  45. D.L. Smith, Thin-Film Deposition: Principles and Practice (McGraw-Hill, New York, 1995)

    Google Scholar 

  46. E. Kisi, Key Eng. Mat. 153–154, 1 (1998)

    Article  Google Scholar 

  47. H. Hasegawa, T. Hioki, O. Kamigaito, J. Mater. Sci. Lett. 4(9), 1092 (1985)

    Article  Google Scholar 

  48. L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, P. Goudeau, J.P. Rivière, Surf. Coat. Technol. 200(9), 2917 (2006)

    Article  Google Scholar 

  49. W.H. Southwell, R.L. Hall, Appl. Opt. 28(14), 2949 (1989)

    Article  ADS  Google Scholar 

  50. E. Lorenzo, C.J. Oton, N.E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, L. Pavesi, Appl. Opt. 44(26), 5415 (2005)

    Article  ADS  Google Scholar 

  51. S. Venkataraj, D. Severin, S.H. Mohamed, J. Ngaruiya, O. Kappertz, M. Wuttig, Thin Solid Films 502(1–2), 228 (2006)

    Article  ADS  Google Scholar 

  52. D. Severin, O. Kappertz, T. Kubart, T. Nyberg, S. Berg, A. Pflug, M. Siemers, M. Wuttig, Appl. Phys. Lett. 88(16), 161504 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Juškevičius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juškevičius, K., Audronis, M., Subačius, A. et al. High-rate reactive magnetron sputtering of zirconia films for laser optics applications. Appl. Phys. A 116, 1229–1240 (2014). https://doi.org/10.1007/s00339-013-8214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8214-1

Keywords

Navigation