Skip to main content

Advertisement

Log in

Effect of energy density on the machining character of C/SiC composites by picosecond laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of laser energy density on the machining character of C/SiC composites by picosecond laser was investigated using two machining modes: single ring line and helical lines scanning. For single ring line scanning mode, the width and depth of machining grooves increased nonlinearly with the increase of laser energy density. Moreover, periodic surface structures (ripples) were generated at relative low laser energy density and disappeared at high energy density. With the increasing energy density, the oxygen content of machining debris increased dramatically. For helical lines scanning mode, the depth of machining grooves increased nonlinearly with the increasing laser energy density. With the increasing energy density, the oxygen content of machining debris also increased dramatically. The machining character showed as nano-scale laser-induced ripples, pores, strip structures and bubble pits. Finally, micro-holes of high aspect ratio were obtained in the mode of helical lines scanning by removing multiple layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Díaz, L. Rubio, J. Mater. Process. Technol. 143–144, 342 (2003)

    Article  Google Scholar 

  2. R. Naslain, Compos. Sci. Technol. 64, 155 (2004)

    Article  Google Scholar 

  3. M. Rosso, J. Mater. Process. Technol. 175, 364 (2006)

    Article  ADS  Google Scholar 

  4. L.T. Zhang, L.F. Cheng, Y.D. Xu, Aeronaut. Manuf. Technol. 1, 24 (2003)

    Google Scholar 

  5. H. Hocheng, N.H. Tai, C.S. Liu, Compos. A 31, 133 (2000)

    Article  Google Scholar 

  6. S. Schmidt, S. Beyer, H. Knabe, H. Immich, R. Meistring, A. Gessler, Acta Astronaut. 55, 409 (2004)

    Article  ADS  Google Scholar 

  7. B. Yan, Z.F. Chen, J.X. Zhun, J.Z. Zhang, Y. Jiang, J. Mater. Process. Technol. 209, 3438 (2009)

    Article  Google Scholar 

  8. C. Momma, S. Nolte, B.N. Chichkov, F. von Alvensleben, A. Tünnermann, Appl. Surf. Sci. 109–110, 15 (1997)

    Article  Google Scholar 

  9. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J.-P. Ruske, B.N. Chichkov, A. Tünnermann, Opt. Express 7, 41 (2000)

    Article  ADS  Google Scholar 

  10. M. Lenzner, J. Krüger, W. Kautek, F. Krausz, Appl. Phys. A 68, 369 (1999)

    Article  ADS  Google Scholar 

  11. X. Liu, D. Du, G. Mourou, IEEE J. Quantum Electron. 33, 1706 (1997)

    Article  ADS  Google Scholar 

  12. S. Nolte, G. Kamlage, F. Korte, T. Bauer, T. Wagner, A. Ostendorf, C. Fallnich, H. Welling, Adv. Eng. Mater. 2, 23 (2000)

    Article  Google Scholar 

  13. F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, Appl. Surf. Sci. 138–139, 107 (1999)

    Article  Google Scholar 

  14. K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, J.G. Fujimoto, Opt. Lett. 26, 1516 (2001)

    Article  ADS  Google Scholar 

  15. R. Bahnisch, W. Grosz, J. Staud, A. Menschig, Sens. Actuators A 74, 31 (1999)

    Article  Google Scholar 

  16. K. Venkatakrishnan, B.K.A. Ngoi, P. Stanley, L.E.N. Lim, B. Tan, N.R. Sivakumar, Appl. Phys. A 74, 493 (2002)

    Article  ADS  Google Scholar 

  17. W.Q. Hu, Y.C. Shin, G.B. King, J. Manuf. Sci. Eng. 132, 011009 (2010)

    Article  Google Scholar 

  18. C.H. Wang, L.T. Zhang, Y.S. Liu, G.H. Cheng, Q. Zhang, K. Hua, Appl. Phys. A 111, 1213 (2013)

    Article  ADS  Google Scholar 

  19. H. Mei, L.F. Cheng, L.T. Zhang, X.G. Luan, J. Zhang, Carbon 44, 121 (2006)

    Article  Google Scholar 

  20. L. Romoli, F. Fischer, R. Kling, Opt. Lasers Eng. 50, 449 (2012)

    Article  Google Scholar 

  21. J. Meijer, K. Du, A. Gillner, D. Hoffmann, V.S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, W. Schulz, CIRP J. Manuf. Sci. Technol. 51, 531 (2002)

    Article  Google Scholar 

  22. J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74, 19 (2002)

    Article  ADS  Google Scholar 

  23. R. Trusovas, K. Ratautas, G. Račiukaitis, J. Barkauskas, I. Stankevičienė, G. Niaura, R. Mažeikienė, Carbon 52, 574 (2013)

    Article  Google Scholar 

  24. B. Tan, K. Venkatakrishnan, J. Micromech. Microeng. 16, 1 (2006)

    Article  Google Scholar 

  25. Y.F. Lu, W.K. Choi, Y. Aoyagi, A. Kinomura, K. Fujii, J. Appl. Phys. 80, 7052 (1996)

    Article  ADS  Google Scholar 

  26. F. Costache, M. Henyk, J. Reif, Appl. Surf. Sci. 186, 352 (2002)

    Article  ADS  Google Scholar 

  27. D.J. Ehrlich, S.R.J. Brueck, J.Y. Tsao, Appl. Phys. Lett. 41, 630 (1982)

    Article  ADS  Google Scholar 

  28. J.C. Wang, C.L. Guo, Appl. Phys. Lett. 87, 251914 (2005)

    Article  ADS  Google Scholar 

  29. J. Mathew, G.L. Goswami, N. Ramakrishnan, N.K. Naik, J. Mater. Process. Technol. 89–90, 198 (1999)

    Article  Google Scholar 

  30. I.P. Dojčinović, M.M. Kuraica, J. Purić, Vacuum 85, 596 (2010)

    Article  Google Scholar 

  31. P. Bizi-bandoki, S. Valette, E. Audouard, S. Benayoun, Appl. Surf. Sci. 270, 197 (2013)

    Article  ADS  Google Scholar 

  32. T. Jiang, Q.L. Zhao, Z.W. Dong, R.W. Pan, X. Yu, Infrared Laser Eng. 39, 1044 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the major national scientific instrument and equipment development project (2011YQ12007504), the Research Fund of State Key Laboratory of Transient Optics and Photonics (No. 201106) and the Northwestern Polytechnical University (20120204), the Chinese National Foundation for Natural Sciences under Contracts (No. 51002120, No. 51032006) and the “111” project under Grant No. 08040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Wang, C., Li, W. et al. Effect of energy density on the machining character of C/SiC composites by picosecond laser. Appl. Phys. A 116, 1221–1228 (2014). https://doi.org/10.1007/s00339-013-8213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8213-2

Keywords

Navigation