Applied Physics A

, Volume 116, Issue 3, pp 1211–1220 | Cite as

Bubble formation induced by nanosecond laser ablation in water and its diagnosis by optical transmission technique

  • M. H. Mahdieh
  • M. Akbari Jafarabadi


In this paper, bubble formation and ablation rate in laser ablation of a thin-film aluminum target are studied. The target was an aluminum thin-film coated on a quartz substrate and interacted by a nanosecond Nd:YAG laser beam in ambient air and distilled water. Measuring optical transmission of a He–Ne beam through the ablation region shows that the ablation rate in water is higher than that in ambient air. The results also show that an initial peak appears in the transmission signal which is an evidence for bubble formation in water. Analyzing the data is useful for monitoring the bubble formation in water and relatively estimating the ablation rate.


Laser Ablation Target Surface Probe Beam Laser Fluences Bubble Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Eason, Pulsed Laser Deposition of Thin Films (Wiley, New York, 2007)Google Scholar
  2. 2.
    J.F. Ready, LIA Handbook of Laser Material Processing (LIA Publishing, Berlin, 2001)Google Scholar
  3. 3.
    M.F. Becker, J.R. Brock, H. Cai, D.E. Henneke, J.W. Keto, J. Lee, W.T. Nichols, H.D. Gliksman, Nanostruct. Mater. 10, 853 (1998)CrossRefGoogle Scholar
  4. 4.
    B.N. Chichkov, C. Momma, S. Nolte, F.V. Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Chen, A. Bogaerts, J. Appl. Phys. 97, 063305 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Chen, D. Bleiner, A. Bogaerts, J. Appl. Phys. 99, 063304 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    I. Vladoiu, M. Stafe, C. Negutu, I.M. Popescu, U.P.B. Sci, Bull. Ser. A 70, 119 (2008)Google Scholar
  8. 8.
    S. Rajendran, M. Keidar, I. D. Boyd, in 38th AIAA Plasma Dynamics and Lasers Conference, vol. 4378 (2007)Google Scholar
  9. 9.
    S.S. Harilal, G.V. Miloshevsky, P.K. Diwakar, N.L. LaHaye, A. Hassanein, Phys. Plasmas 19, 083504 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Zhang, G. Gogos, Phys. Rev. B 69, 235403 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    B. Verhoff, S.S. Harilal, J.R. Freeman, P.K. Diwakar, A. Hassanein, J. Appl. Phys. 112, 093303 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    K. Sasaki, N. Takada, Pure Appl. Chem. 82, 1317 (2010)CrossRefGoogle Scholar
  13. 13.
    B. Kumar, R.K. Thareja, J. Appl. Phys. 108, 064906 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    T. Tsuji, Y. Tsuboi, N. Kitamura, M. Tsuji, Appl. Surf. Sci. 229, 365 (2004)ADSGoogle Scholar
  15. 15.
    A. Kruusing, Opt. Lasers Eng. 41, 329 (2004)CrossRefGoogle Scholar
  16. 16.
    M. Geiger, W. Becker, T. Rebhan, J. Hutfless, N. Lutz, App. Surf. Sci. 96, 309 (1996)ADSGoogle Scholar
  17. 17.
    S. Zhu, Y.F. Lu, M.H. Hong, X.Y. Chen, J. Appl. Phys. 89, 2400 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    A. Dupont, P. Caminat, P. Bournot, J.P. Gauchon, J. Appl. Phys. 78, 2022 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    S. Zhu, Y.F. Lu, M.H. Hong, Appl. Phys. Lett. 79, 1396 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    V.A. Ageev, A.F. Bokhonov, V.V. Zhukovskii, A.A. Yankovskii, J. Appl. Spect. 64, 683 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    B. Thornton, T. Takahashi, T. Ura, T. Sakka, Appl. Phys. Exp. 5, 102402 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    S.J. Shaw, W.P. Schiffers, T.P. Gentry, D.C. Emmony, J. Phys. D Appl. Phys. 32, 1612 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    S.J. Shaw, Y.H. Jin, W.P. Schiffers, D.C. Emmony, J. Acoust. Soc. Am. 99, 2811 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    T. Sakka, S. Iwanaga, Y.H. Ogata, A. Matsunawa, T. Takemoto, J. Chem. Phys. 112, 8645 (2000)ADSGoogle Scholar
  25. 25.
    M.H. Mahdieh, H. Hosseini Shokoh, Appl. Phys. A 106, 995 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    M.H. Mahdieh, M. Akbari Jafarabadi, Sh. Firozyar, Sh. Hajiani, Proc. SPIE 8677, 86771 (2012)ADSGoogle Scholar
  27. 27.
    A. Bogaerts, Zh. Chen, J. Anal. At. Spectrom. 19, 1169 (2004)CrossRefGoogle Scholar
  28. 28.
    S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Phys. D Appl. Phys. 35, 2935 (2002)CrossRefGoogle Scholar
  29. 29.
    B. Kumar, R.K. Thareja, Phys. Plasmas 19, 033516 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    S. Wen, X. Mao, R. Greif, R.F. Russo, Radiat. J. Appl. Phys. 100, 035104 (2006)Google Scholar
  31. 31.
    E. Hecht, A. Zajak, Optics (Addison-Wesley, New York, 2002)Google Scholar
  32. 32.
    J.T. Verdeyen, Laser Electronics (Prentice-Hall, New Jersey, 1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsIran University of Science and TechnologyTehranIran

Personalised recommendations