Skip to main content
Log in

The electric field screening and crossing point shift effects in coated carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report here the theoretical explanation of the experimentally observed electric field screening and crossing point shift effects in glycine-isopropanol-coated single-walled carbon nanotubes. The external electric field screening effect was illustrated in the framework of the analytical solution of the Laplace equation and Langevin–Debye theory. In this approach, we utilized the polarizability tensor of the glycine-isopropanol molecular complex calculated ab initio by the Density Functional Theory. The shift of the crossing point of the original p-type semiconductor curve for nanotube with the final metallic line was explained from ab initio results of the electron charge transfer from nanotube to the coating layer. The results of calculations agreed with the experimental data very well and an encouraging relationship was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badesku, T.L. Reinicke, Science 307, 1942 (2005)

    Article  ADS  Google Scholar 

  2. N. Peng, Q. Zhang, C.L. Chow, O.K. Tan, N. Marzari, Nano Lett. 9, 1626 (2009)

    Article  ADS  Google Scholar 

  3. R.J. Chen, H.C. Choi, S. Bangsaruntip, E. Yenilmez, X. Tang, Q. Wang, Y. Chang, H. Dai, J. Am. Chem. Soc. 126, 1563 (2004)

    Article  Google Scholar 

  4. K. Balasubramanian, T. Kurkina, A. Ahmad, M. Burghard, K. Kern, J. Mater. Res. 2, 391 (2012)

    Article  ADS  Google Scholar 

  5. T. Someya, J. Small, P. Kim, C. Nickolls, T.J. Yardley, Nano Lett. 3, 877 (2003)

    Article  ADS  Google Scholar 

  6. S. Brahim, S. Colbern, R. Gump, A. Moser, L. Grigorian, Nanotech. 20, 235502 (2009)

    Article  ADS  Google Scholar 

  7. H. Leng, Y. Lin, IEEE Sens. J. 10, 1091 (2010)

    Article  Google Scholar 

  8. Q. Zhao, M. Nardelli, W. Lu, J. Bernholc, Nano Lett. 5, 847 (2005)

    Article  ADS  Google Scholar 

  9. M.B. Lerner, J.M. Resczenski, A. Amin, R.R. Johnson, J.I. Goldsmith, A.T.C. Johnson, J. Am. Chem. Soc. 134, 14318 (2012)

    Article  Google Scholar 

  10. J. Zhao, A. Buldum, J. Han, J.P. Lu, Nanotech. 13, 195 (2002)

    Article  ADS  Google Scholar 

  11. C. Wei, L.M. Dai, A. Roy, T.B. Tolle, J. Am. Chem. Soc. 128, 1412 (2006)

    Article  Google Scholar 

  12. H.H. Choi, J. Lee, K. Dong, B. Ju, W. Lee, Nanoscale Res. Lett. 6, 1 (2011)

    ADS  Google Scholar 

  13. S. Heinze, J. Tersoff, P. Avouris, Appl. Phys. Lett. 83, 24 (2003)

    Article  Google Scholar 

  14. T. Yamada, Appl. Phys. Lett. 88, 083106 (2006)

    Article  ADS  Google Scholar 

  15. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, P. Avouris, Phys. Rev. Lett. 87, 256805 (2001)

    Article  ADS  Google Scholar 

  16. V. Derycke, R. Martel, J. Appenzeller, P. Avouris, Appl. Phys. Lett. 80, 2773 (2002)

    Article  ADS  Google Scholar 

  17. J. Kong, J. Cao, H. Dai, E. Anderson, Appl. Phys. Lett. 80, 73 (2002)

    Article  ADS  Google Scholar 

  18. H.J. Song, Y. Lee, T. Jiang, A. Kussow, M. Lee, S. Hong, Y. Kwon, H.C. Choi, J. Phys. Chem. C 112, 629 (2008)

    Article  Google Scholar 

  19. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  20. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  21. C. Kittel, Introduction to solid state physics, 3rd edn. (John Wiley & Sons Inc., New York, 1966)

    Google Scholar 

  22. Dean’s handbook of organic chemistry, 2nd edn. (McGraw Hill Handbooks, New York, 2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, T. The electric field screening and crossing point shift effects in coated carbon nanotubes. Appl. Phys. A 116, 629–633 (2014). https://doi.org/10.1007/s00339-013-8203-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8203-4

Keywords

Navigation