Skip to main content
Log in

Evolution of structural, magnetic and magnetocaloric properties in Sn-doped manganites La0.57Nd0.1Sr0.33Mn1−x Sn x O3 (x = 0.05–0.3)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Structural and magnetic properties of manganites series La0.57Nd0.1Sr0.33Mn1−x Sn x O3 with (0.05 ≤ x ≤ 0.30) have been investigated, and the critical exponents and magnetocaloric effect are studied around the room temperature, to shed light on Sn substitution influence. A solid-state reaction method was used in the preparation. A structural study using Rietveld refinement of XRD patterns indicates rhombohedral structure with R\( \overline{3} \)c space group for (0.05 ≤ x ≤ 0.20) and shows the existence of a secondary phase attributed to the neodymium tin oxide (Nd2Sn2O7) pyrochlore for x = 0.3. The variation of the magnetization (M) vs. temperature (T), under an applied magnetic field of 0.05 T, reveals a ferromagnetic–paramagnetic transition at the Curie temperature T C. In addition, it was discovered that increasing the tin content leads to a reduction in magnetization and a lowering of T C from 282 K (x = 0.05) to 158 K (x = 0.20) with increasing Sn substitution. The samples exhibit the characteristics of spin/cluster-glass state which is evident from (zero-field-cooled and field-cooled) magnetization vs. temperature curves. Indeed, the thermal evolution of magnetization in the ferromagnetic phase at low temperature varies as T 3/2, in accordance with Bloch’s law. The spin-stiffness constant D obtained from the Bloch constant was determined. A large magnetocaloric effect has been observed in both samples (x = 0.05 and x = 0.10): the maximum entropy change, \( \left| {\varDelta S_{\text{M} }^{\text{peak}} } \right| \), reaches the highest value of 3.22 J/kg K under a magnetic field change of 5 T with a RCP value of 56 J/kg for x = 0.10 composition. This opens an interesting opportunity to this compound to compete with materials which work as magnetic refrigerants near room temperature. Besides, we show that the samples follow the conventional behavior of a second-order ferromagnetic transition. This was possible by investigating the critical behavior at the transition region by adopting the modified Arrott plot method. The values of the critical exponents (β, γ, δ and n) are determined and they are between those predicted by the three-dimensional Heisenberg model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Shelke, S. Khatarkar, R. Yadav, A. Anshul, R.K. Singh, J. Magn. Magn. Mater. 322, 1224 (2010)

    ADS  Google Scholar 

  2. Z. Wang, J. Jiang, Sol. Stat. Sci. 18, 36 (2013)

    ADS  Google Scholar 

  3. K.A. Gschneidner Jr, V.K. Pecharsky, Int. J. Refrig. 31, 945 (2008)

    Google Scholar 

  4. S.Y. Dankov, A.M. Tishin, V.K. Pecharsky, K.A. Gschneidner Jr, Phys. Rev. B 57, 3478 (1998)

    ADS  Google Scholar 

  5. V.K. Pecharsky, K.A. Gschneidner Jr, Phys. Rev. Lett. 78, 4494 (1997)

    ADS  Google Scholar 

  6. N.K. Singh, K.G. Suresh, A.K. Nigam, S.K. Malik, A.A. Coelho, S.J. Gama, J. Magn. Magn. Mater. 31, 68 (2007)

    ADS  Google Scholar 

  7. A. Fujita, S. Fujieda, Y. Hasegawa, K. Fukamichi, Phys. Rev. B 67, 104416 (2003)

    ADS  Google Scholar 

  8. O. Tegus, E. Bruck, K.H.J. Buschow, F.R. DeBoer, Nature (Lond.) 415, 150 (2002)

    ADS  Google Scholar 

  9. A. Omri, M. Bejar, M. Sajieddine, E. Dhahri, E. K. Hlil, M. A. Valente, in Progress in electromagnetics research symposium proceedings, Marrakesh, Morocco, 20–23 March 2011

  10. R. Cabassi, F. Bolzoni, A. Gauzzi, F. Licci, Phys. Rev. B 74, 184425 (2006)

    ADS  Google Scholar 

  11. J. Gass, H. Srikanth, N. Kislov, S.S. Srinivasan, Y. Emirov, J. Appl. Phys. 103, 07B309 (2008)

    Google Scholar 

  12. J.L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98, 283 (1997)

    Google Scholar 

  13. M. Kar, A. Perumal, S. Ravi, Phys. Stat. Sol. (b) 243, 1908 (2006)

    ADS  Google Scholar 

  14. V. Franco, A. Conde, D. Sidhaye, B.L.V. Prasad, P. Poddar, S. Srinath, M.H. Phan, H. Srikanth, J. Appl. Phys. 107, 09A902 (2010)

    Google Scholar 

  15. E. Tka, K. Cherif, J. Dhahri, E. Dhahri, H. Belmabrouk, E.K. Hlil, J. Alloys Compd. 518, 32 (2012)

    Google Scholar 

  16. J. Przewoznik, J. Chmist, L. Kolwicz-Chodak, Z. Tarnawski, A. Kolodziejczyk, K. Krop, K. Kellner, G. Gritzner, Acta Phys. Polonica 106, 665 (2004)

    ADS  Google Scholar 

  17. J. Dhahri, A. Dhahri, M. Oumezzine, E. Dhahri, J. Magn. Magn. Mater. 320, 2613 (2008)

    ADS  Google Scholar 

  18. A. Simopoulos, G. Kallias, E. Devlin, M. Pissas, Phys. Rev. B 63, 054403 (2000)

    ADS  Google Scholar 

  19. E. Tka, K. Cherif, J. Dhahri, E. Dhahri, J. Alloys Compd. 509, 8047 (2011)

    Google Scholar 

  20. M. Nasri, M. Triki, E. Dhahri, E.K. Hlil, J. Alloys Compd. 546, 84 (2013)

    Google Scholar 

  21. E. Tka, K. Cherif, J. Dhahri, E. Dhahri, E.K. Hlil, J. Supercond. Nov. Magn. 25, 2109 (2012)

    Google Scholar 

  22. N. Dhahri, J. Dhahri, E.K. Hlil, E. Dhahri, J. Magn. Magn. Mater. 324, 806 (2012)

    ADS  Google Scholar 

  23. A. Dhahri, J. Dhahri, E.K. Hlil, E. Dhahri, J. Alloys Compd. 530, 1 (2012)

    Google Scholar 

  24. R.D. Shannon, C.T. Prewitt, Acta Cryst. B 25, 925 (1969)

    Google Scholar 

  25. Y.M. Goldshmidt, J. Maten Naturwid. Kl. 2, 97 (1926)

    Google Scholar 

  26. P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.-W. Cheong, J.D. Jorgensen, D.N. Argyriou, Phys. Rev. B 56, 8265 (1997)

    ADS  Google Scholar 

  27. B.C. Zhao, Y.P. Sun, W.H. Song, L. Wang, J. Appl. Phys. 105, 013917 (2009)

    ADS  Google Scholar 

  28. C. Kittel, Quantum Theory of Solids, 55th edn. (Wiley, New York, 1987)

    Google Scholar 

  29. V.N. Smolyaninova, J.J. Hamilton, R.L. Greene, Y.M. Mukovskii, S.G. Karabashev, A.M. Balbashov, Phys. Rev. B 55, 5640 (1997)

    ADS  Google Scholar 

  30. S.L. Young, H.Z. Chen, L. Horng, J.B. Shi, Y.C. Chen, Jpn. J. Appl. Phys. 40, 4878 (2001)

    ADS  Google Scholar 

  31. B. Padmanabhan, S. Elizabeth, H.L. Bhat, S. Rößler, K. Dörr, K.H. Müller, J. Magn. Magn. Mater. 307, 288 (2006)

    ADS  Google Scholar 

  32. W. Jiang, X.Z. Zhou, G. Williams, Y. Mukovskii, K. Glazyrin, Phys. Rev. Lett. 99, 177203 (2007)

    ADS  Google Scholar 

  33. W. Jiang, X.Z. Zhou, G. Williams, Y. Mukovskii, K. Glazyrin, Phys. Rev. B 77, 064424 (2008)

    ADS  Google Scholar 

  34. V.J. Minkiewiez, M.F. Collins, R. Nathans, G. Shirane, Phys. Rev. 182, 624 (1969)

    ADS  Google Scholar 

  35. G. Bouzerar, O. Cépas, Phys. Rev. B 76, 020401 (2007)

    ADS  Google Scholar 

  36. N. Kallel, K. Fröhlich, S.P. Oumezzine, H. Vincent, J. Alloys Compd. 399, 20 (2005)

    Google Scholar 

  37. P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)

    ADS  Google Scholar 

  38. N. Ghosh, S. Elizabeth, H.L. Bhat, U.K. Rößler, K. Nenkov, S. Rößler, K. Dörr, K.H. Müller, Phys. Rev. B 70, 184436 (2004)

    ADS  Google Scholar 

  39. H.E. Stanley, Introduction to phase transitions and critical phenomena (Oxford University Press, London, 1971)

    Google Scholar 

  40. S.K. Banerjee, Phys. Lett. 12, 16 (1964)

    ADS  Google Scholar 

  41. B. Widom, J. Chem. Phys. 41, 1633 (1964)

    ADS  MathSciNet  Google Scholar 

  42. M.E. Fisher, S.K. Ma, B.G. Nickel, Phys. Rev. Lett. 29, 917 (1972)

    ADS  Google Scholar 

  43. N. Chau, P.Q. Niem, H.N. Nhat, N.H. Luong, N.D. Tho, Phys. B 327, 214 (2003)

    ADS  Google Scholar 

  44. S. Atalay, V.S. Kolat, H. Gencer, H.I. Adiguzel, J. Magn. Magn. Mater. 305, 452 (2006)

    ADS  Google Scholar 

  45. S. Ghodhbane, A. Dhahri, N. Dhahri, E.K. Hlil, J. Dhahri, J. Alloys Compd. 550, 358 (2013)

    Google Scholar 

  46. H. Oesterreicher, F.T. Parker, J. Appl. Phys. 55, 4334 (1984)

    ADS  Google Scholar 

  47. M. Pękała, J. Appl. Phys. 108, 113913 (2010)

    Google Scholar 

  48. V. Franco, A. Conde, M.D. Kuzmin, J.M. Romero-Enrique, J. Appl. Phys. 105, 07A917 (2009)

    Google Scholar 

  49. J. Fan, L. Pi, L. Zhang, W. Tong, L. Ling, Appl. Phys. Lett. 98, 072508 (2011)

    ADS  Google Scholar 

  50. V. Franco, J.S. Blàzquez, A. Conde, Appl. Phys. Lett. 89, 222512 (2006)

    ADS  Google Scholar 

  51. A. M. Tishin, Y. I. Spichkin, 475, (Institute of Physics Publishing, Bristol and Philadelphia 2003)

  52. M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308, 325 (2007)

    ADS  Google Scholar 

  53. V.S. Amaral, J.S. Amaral, J. Magn. Magn. Mater. 272, 2104 (2004)

    ADS  Google Scholar 

  54. J.S. Amaral, M.S. Reis, V.S. Amaral, T.M. Mendonça, J.P. Araújo, M.A. Sá, P.B. Tavares, J.M. Vieira, J. Magn. Magn. Mater. 290, 686 (2005)

    ADS  Google Scholar 

  55. M.S. Reis, A.M. Gomes, J.P. Araújo, P.B. Tavares, J.S. Amaral, I.S. Oliveira, V.S. Amaral, Mater. Sci. Forum 455, 148 (2004)

    Google Scholar 

Download references

Acknowledgments

The authors are so grateful to Madam Amel Medimagh for her valuable and helpful English language comments and discussions on early drafts of the present review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tka, E., Cherif, K. & Dhahri, J. Evolution of structural, magnetic and magnetocaloric properties in Sn-doped manganites La0.57Nd0.1Sr0.33Mn1−x Sn x O3 (x = 0.05–0.3). Appl. Phys. A 116, 1181–1191 (2014). https://doi.org/10.1007/s00339-013-8202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8202-5

Keywords

Navigation