Skip to main content
Log in

First-principles study on the structural, elastic, and thermodynamics properties of Ni3X (X: Al, Mo, Ti, Pt, Si, Nb, V, and Zr) intermetallic compounds

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present study, the ground-state properties of Ni3X intermetallic compounds were analyzed by means of the first-principles pseudo-potential method using the Cambridge serial total energy package code. The calculated lattice parameters of Ni3X intermetallic compounds are in good agreement with the experimental and other theoretical data. The single-crystal elastic constants were calculated; the hardness, ductile, and plasticity of materials were analyzed. The calculated enthalpies of formation showed that all of intermetallic compounds were thermodynamically stable; Debye temperature and heat capacity are calculated and discussed. Moreover, the chemical bonding in these intermetallic compounds was interpreted by calculating the density of states, electron density difference distribution, and Mulliken analysis; magnetism properties were briefly analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Hou, Y. Zhao, Z. Chen, H. Xu, Acta. Merall. Sinca 41, 695–702 (2005)

    Google Scholar 

  2. Z. Yuhong, C. Zheng, W. Yongxin, T. Liying, L. Yanli, Rare Metal Mater. Eng. 33, 701–705 (2004)

    Google Scholar 

  3. Zhao Yuhong, Chen Zheng, Wang Yongxin, Liu Bing, Ma. Liang, Rare Metal. Mater. Eng. 33, 234–238 (2004)

    Google Scholar 

  4. U.D. Kulkarni, G.K. Dey, Acta Mater. 52, 2711–2720 (2004)

    Article  Google Scholar 

  5. K. Tomihisa, Y. Kaneno, T. Takasugi, Intermetallics 10, 247–254 (2002)

    Article  Google Scholar 

  6. Lu Xiao-Gang, B. Sundman, J. Ågren, CALPHAD: computer coupling of phase diagrams and thermochemistry 33, 450–456 (2009)

    Article  Google Scholar 

  7. R. Rautioaho, M–.M. Riipinen, T. Saven, A. Tammined, Intermetallics 4, 99–109 (1996)

    Article  Google Scholar 

  8. W. Soga, Y. Kaneno, T. Takasugi, Intermetallics 14, 170–179 (2006)

    Article  Google Scholar 

  9. K. Kawahara, Y. Kaneno, A. Kakitsuji, T. Takasugi, Intermetallics 17, 938–944 (2009)

    Article  Google Scholar 

  10. T.R. Hess, D.L. Cocke, G. Abend, J.H. Block, Appl. Surf. Sci. 94(95), 238–246 (1996)

    Article  ADS  Google Scholar 

  11. D.E. Kim, S.L. Shang, Z.K. Liu, Intermetallics 18, 1163–1171 (2010)

    Article  Google Scholar 

  12. C. Jiang, D.J. Sordelet, B. Gleeson, Acta Mater. 54, 1147–1154 (2006)

    Article  Google Scholar 

  13. T. Hirano, T. Mawari, M. Demura, Y. Isoda, Mater. Sci. Eng. A239–240, 324–329 (1997)

    Article  Google Scholar 

  14. D. Shi, B. Wen, R. Melnik, S. Yao, T. Li, J. Solid State Chem. 182, 2664–2669 (2009)

    Article  ADS  Google Scholar 

  15. D.R. Hamann, M. Schluter, C. Chiang, Phy. Rev. Lett. 43, 1494 (1979)

    Article  ADS  Google Scholar 

  16. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Modern Phy. 64, 1045 (1992)

    Article  ADS  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phy. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  18. H.Y. Geng, N.X. Chen, M.H.F. Sluiter, Phy. Rev. B 70, 094203 (2004)

    Article  ADS  Google Scholar 

  19. W. Soga, Y. Kaneno, T. Takasugi, Intermetallics 14, 170–179 (2006)

    Article  Google Scholar 

  20. S. Saito, P.A. Beck, Trans. Metall. Soc. Aime 215, 938–941 (1959)

    Google Scholar 

  21. K. Ohira, Y. Kaneno, T. Takasugi, Mater. Sci. Eng. A. 399, 332–343 (2005)

    Article  Google Scholar 

  22. F. Laves, H.J. Wallbaum, Acta Cryst. 3, 285–289 (1950)

    Article  Google Scholar 

  23. A. Kussmann, H.E. von Steinwehr, Zeitschrift fuer Metall 40, 263–266 (1949)

    Google Scholar 

  24. S. Ochiai, Y. Mishima, T. Suzuki, Bulletin research laboratory precision machinery electronics. Tokio Inst. Technol 53, 15–28 (1984)

    Google Scholar 

  25. F. Tao, S.J. Kennedy, Q. Lin, T.J. Hicks, J. Phy. Condens. Matter 4, 2405–2414 (1992)

    Article  ADS  Google Scholar 

  26. J. Maas, G. Bastin, F. van Loo, R. Metselaar, Zeitschrift fuer Metall. 5, 294–299 (1983)

    Google Scholar 

  27. C. Becle, B. Bourniquel, G. Develey, M. Saillard, J. Less Common Metals 66, 59–66 (1979)

    Article  Google Scholar 

  28. Y. Wang, Z.K. Liu, L.Q. Chen, Acta. Mater. 52, 2665–2671 (2004)

    Article  MathSciNet  Google Scholar 

  29. S. Yu, C.Y. Wang, T. Yu, J. Cai, Phy. B Condens. Matter 396, 138–144 (2007)

    Article  ADS  Google Scholar 

  30. J. Frankel, Phy. 139(140B), 198–201 (1986)

    Google Scholar 

  31. S. Dai, W. Liu, Comp. Mater. Sci. 49, 414–418 (2010)

    Article  Google Scholar 

  32. S.-L. Shang, Y. Wang, D. Yong, Z.-K. Liu, Intermetallics 18, 961–964 (2010)

    Article  Google Scholar 

  33. A. Arya, G.K. Dey, K. Vijay, S. Vasudevan, S. Banerjee, Acta Mater. 50, 3301–3315 (2002)

    Article  Google Scholar 

  34. J.F. Nye, Physical properties of crystals (Oxford University Press, Oxford, 1985)

    Google Scholar 

  35. O. Beckstein, J.E. Klepeis, G.L.W. Hart, O. Pankratov, Phy. Rev. B 63, 134112 (2001)

    Article  ADS  Google Scholar 

  36. T. Tsuchiya, T. Yamanaka, M. Matsui, Phy. Chem. Minerals 27, 149–155 (2000)

    Article  ADS  Google Scholar 

  37. M.B. Kanoun, S. Goumri-Said, A.H. Reshak, Comp. Mater. Sci. 47, 491–500 (2009)

    Article  Google Scholar 

  38. T. Goto, T. Sasaki, Y. Hirose, JCPDS—International Centre Diff Data (1999) 518

  39. S.F. Pugh, Phil. Mag. Ser. 7(45), 823 (1954)

    Google Scholar 

  40. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Google Scholar 

  41. O. Lebacq, A. Pasturel, D.N. Manh, A. Finel, R. Caudron, J. Alloys Comp. 264, 31–37 (1998)

    Article  Google Scholar 

  42. Y. Wang, C. Woodward, S.H. Zhou, Z.K. Liu, L.Q. Chen, Scripta Mater. 52, 17–20 (2005)

    Article  Google Scholar 

  43. V.M. Es’kov, V.V. Samokhval, A.A. Vecher, Russian Metall 2, 118 (1974)

    Google Scholar 

  44. Y. Du, N. Clavaguera, J. Alloys Comp. 237, 20–32 (1996)

    Article  Google Scholar 

  45. R. Hultgren, P.D. Desal, D.T. Hawkins, M. Gleiser, K.K. Kelley, Selected values of the thermodynamic properties of binary alloys (ASM, Metals Park, 1973)

    Google Scholar 

  46. C. Wolverton, A. Zunger, Phys. Rev. B 52, 8813 (1995)

    Article  ADS  Google Scholar 

  47. Chen Lü, Peng Ping, Li Guifa, Rare Metal Mater. Eng. 35, 1065–1170 (2006)

    Google Scholar 

  48. B. Mayer, H. Anton, E. Bolt, Intermetallics 11, 23 (2003)

    Article  Google Scholar 

  49. E. Deligoz, Y.O. Ciftci, P.T. Jochym, Mater. Chem. Phys. 111, 29 (2008)

    Article  Google Scholar 

  50. G.V. Sin’ko, N.A. Smirnow, J Phys Condens Matter 14, 6989 (2002)

    Article  ADS  Google Scholar 

  51. M.K. Drulis, A. Czopnik, H. Drulis, Mater. Sci. Eng., B 119, 159 (2005)

    Article  Google Scholar 

  52. A.H. Reshak, S. Auluck, I.V. Kityk, J. Phys. D Appl. Phys. 42, 085406 (2009)

    Article  ADS  Google Scholar 

  53. A.H. Reshak, S. Auluck, I.V. Kityk, J. Phys. Chem. A 113(8), 1614–1622 (2009)

    Article  Google Scholar 

  54. A.H. Reshak, J. Phys. Chem. A 113(8), 1635–1645 (2009)

    Article  Google Scholar 

  55. A.H. Reshak, D.A.O. Ortíz, J. Phys. Chem. B 113(40), 3208–13215 (2009)

    Article  Google Scholar 

  56. A.H. Reshak, S. Auluck, I.V. Kityk, J. Phys. Chem. B 115(13), 3363–3370 (2011)

    Article  Google Scholar 

  57. A.H. Reshak, S. Auluck, Phys. Rev. B 68, 195107 (2003)

    Article  ADS  Google Scholar 

  58. A.H. Reshak, S. Auluck, Phy. Rev. B 68, 125101 (2003)

    Article  ADS  Google Scholar 

  59. A.H. Reshak, S. Auluck, Phys. Rev. B 68, 245113 (2003)

    Article  ADS  Google Scholar 

  60. A.H. Reshak, S. Auluck, Phys. B 349, 310–315 (2004)

    Article  ADS  Google Scholar 

  61. A.H. Reshak, I.V. Kityk, S. Auluck, J. Chem. Phys. 129, 074706 (2008)

    ADS  Google Scholar 

  62. Y.F. Li, Y.M. Gao, B. Xiao, J. Alloys Compd. 502, 28–37 (2010)

    Article  Google Scholar 

  63. S.N. Mishra, Phys. Rev. B 77, 224402 (2008)

    Article  ADS  Google Scholar 

  64. T. Beuerle, K. Hummler, C. Elsässer, M. Fähnle, Phys. Rev. B 49, 8802 (1994)

    Article  ADS  Google Scholar 

  65. K. Willenborg, R. Zeller, P.H. Dederichs, Europhys. Lett. 18, 263 (1992)

    Article  ADS  Google Scholar 

  66. S. Blügel, Phys. Rev. Lett. 68, 851 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51005217 and the Chong Qing Natural Science Foundation under Grant No. CSTC 2013jcyjjq70001. Dr. Chen is grateful for the support from China Postdoctoral Science Foundation Grant No. 20100480677 and 2012T50760.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Huang, Z., Zhao, Z. et al. First-principles study on the structural, elastic, and thermodynamics properties of Ni3X (X: Al, Mo, Ti, Pt, Si, Nb, V, and Zr) intermetallic compounds. Appl. Phys. A 116, 1161–1172 (2014). https://doi.org/10.1007/s00339-013-8201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8201-6

Keywords

Navigation