Skip to main content

Advertisement

Log in

Characterizations of evaporated α-Si thin films for MEMS application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Amorphous silicon (α-Si) thin films are widely used as electrical, optical and mechanical materials mainly synthesized by chemical vapor deposition (CVD) methods such as plasma-enhanced chemical vapor deposition (PECVD) and low pressure chemical vapor deposition. However, the physical vapor deposition ways which are seldom studied may demonstrate a proper choice for the deposition of α-Si thin films as the structural material for micro-electromechanical systems application. One of the CVD methods of e-beam thermal evaporation was used for the deposition of α-Si thin films in this study. All samples of deposited α-Si thin films had smooth surface with the root mean square surface roughness less than 1.6 nm. The α-Si film with a relatively low stress of about 250 MPa was obtained with a film thickness of 500 nm at a deposition rate of 4.7−6.1 Å/s. The film thickness variation of α-Si deposited on a 4 inch white glass had a 0.78 % uniformity. The 150-nm-thick α-Si film showed a good conformality on the patterned 500-nm-thick Mo film and it had a leak current density of 2.8 × 10−3 A/cm2 under a 5 V bias voltage. The film’s Young’s modulus and hardness were extracted by a nano-indenter with values of 71.6 and 7.9 GPa, respectively. Characteristics of evaporated α-Si films and PECVD α-Si:H films were also compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.E. Carlson, C.R. Wronski, Appl. Phys. Lett 28, 671 (1976)

    Article  ADS  Google Scholar 

  2. X.M. Liu, H.J. Fang, L.T. Liu, Infrared Phys. Tech. 50, 47 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  3. J.C. Sturm, Y. Huang, L. Han, T. Liu, B. Hekmatshoar, K. Cherenack, E. Lausecker, S. Wagner (2011). doi:10.1109/ULIS.2011.5758011

  4. M. Moridi, S. Tanner, N. Wyrsch, P.A. Farine, S. Rohr (2009). doi:10.1109/ICSENS.2009.5398496

  5. S. Chang, S. Sivoththaman, J. Micromech. Microeng. 16, 1307 (2006)

    Article  ADS  Google Scholar 

  6. P.J. French, Sens. Actuators A 99, 3 (2002)

    Article  MathSciNet  Google Scholar 

  7. T. Abe, M.L. Reed. (1996). doi:10.1109/MEMSYS.1996.493990

  8. M. Poonia, S. Choudhari, S. Jamil, Int. J. Adv Technol 2, 108 (2011)

    Google Scholar 

  9. U. Kroll, J. Meier, A. Shah, S. Mikhailov, J. Weber, J. Appl. Phys. 80, 4971 (1996)

    Article  ADS  Google Scholar 

  10. R.A. Street, Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge, 1991), p. 2

  11. C. Iliescu, B. Chen, J. Micromech. Microeng. 18, 015024 (2008)

    Article  ADS  Google Scholar 

  12. J. Akhtar, B.B Dixit, B.D. Pant, V.P. Deshwal, IETE J. Res. 49, 365 (2003)

    Google Scholar 

  13. V. Bhatt, S. Chandra, S. Kumar, C.M.S. Rauthan, P.N. Dixit, Indian J. Pure Appl. Phys. 45, 377 (2007)

    Google Scholar 

  14. P.J. French, Sens. Actuators A 99, 3 (2002)

    Article  MathSciNet  Google Scholar 

  15. N. Biyikli, Y. Damgaci, B.A. Cetiner Electron. Lett. 45, 354 (2009)

    Article  Google Scholar 

  16. C.K. Chung, M.Q. Tsai, P.H. Tsai, C. Lee, J. Micromech. Microeng. 15,136 (2005)

    Article  ADS  Google Scholar 

  17. T. Serikawa, F. Omata, Jpn. J. Appl. Phys. 39, 1277 (2000)

    Article  ADS  Google Scholar 

  18. H. Zhong, Z.F. Xiao, X.Q. Jiao, J. Yang, H.L. Wang, R. Zhang, Y. Shi, J. Mater. Sci.: Mater. Electron. 23, 2216 (2012)

    Article  Google Scholar 

  19. G.G. Stoney Proc. R. Soc. London Ser. A 82, 172 (1909)

    Article  ADS  Google Scholar 

  20. S.H. Lee, J.K. Lee, J. Vac. Sci. Technol. A 21, 1 (2003)

    Article  ADS  Google Scholar 

  21. P. Danesh, B. Pantchev, Semicond. Sci. Technol. 15, 971 (2000)

    Article  ADS  Google Scholar 

  22. P. Danesh, B. Pantchev, K. Antonova, E. Liarokapis, B. Schmidt, D. Grambole, J. Baran, J. Phys. D. Appl. Phys. 37, 249 (2004)

    Article  ADS  Google Scholar 

  23. D.Y. Kim, H.S. Cho, K.B. Park, J.Y. Kwon, J.S. Jung, J. Korean Phys. Soc. 45, 847 (2004)

    Google Scholar 

  24. H.R. Shea, A. Gasparyan, H.B. Chan, S. Arney, R.E. Frahm, D. L\(\acute{o}\)pez, S. Jin, R.P. McConnell, IEEE Trans. Device Mater. Rel. 4, 198 (2004)

    Article  Google Scholar 

  25. R.A. Street, Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge, 1991), p. 327

  26. M.J. Thompson, N.M. Johnson, R.J. Nemanich, C.C. Tsai, Appl. Phys. Lett. 39, 274 (1981)

    Google Scholar 

  27. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  ADS  Google Scholar 

  28. R.B. Wehrspohn, S.C. Deane, I.D. French, I. Gale, J. Hewett, M.J. Powell, J. Robertson, J. Appl. Phys. 87, 144 (2000)

    Article  ADS  Google Scholar 

  29. J. Robertson, Prog. Solid State Chem. 21, 199 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (No. 61101038) and Sichuan Key Technology R&D Program (No. 2011GZ0220). The authors would like to thank Mr. Nan Zhang for providing the SEM measurement, Mr. Jie Yang and his partner for testing the Young’s modulus and hardness and Mr. Taisong Pan for his help with I-V test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Jiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, X.Q., Zhang, R., Yang, J. et al. Characterizations of evaporated α-Si thin films for MEMS application. Appl. Phys. A 116, 621–627 (2014). https://doi.org/10.1007/s00339-013-8200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8200-7

Keywords

Navigation