Applied Physics A

, Volume 114, Issue 1, pp 161–168 | Cite as

Ultrafast electron and material dynamics following femtosecond filamentation induced excitation of transparent solids

  • Dimitrios G. PapazoglouEmail author
  • Daryoush Abdollahpour
  • Stelios TzortzakisEmail author
Invited paper


We examine the spatiotemporal dynamics of filamentation and subsequent material changes in two transparent media, fused silica and poly(methyl methacrylate) (PMMA), using inline holographic microscopy. We are able to dynamically observe the nonlinear propagation of femtosecond laser pulses and the consequent evolution of the electronic excitatio n and trapping inside the bulk of both materials. In the case of fused silica we reveal the physical conditions for the formation of nanogratings, measuring excited electron densities well below the critical density while for PMMA we show that excited electrons with densities exceeding 1018 cm−3, exhibit complex trapping dynamics in a 200 fs time scale. The clear demonstration of ultrafast sub-ps photochemical processes that take place during the irradiation of PMMA with femtosecond pulses will have a strong impact on the laser microprocessing of polymers and nanosurgery applications of bio-related materials.


PMMA Fuse Silica Probe Beam Refractive Index Change Focal Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the inspiration and impact in this work of the late Savas Georgiou, to whose memory we dedicate this article. We also wish to acknowledge helpful discussions with Nikita Bityurin. This work was supported by the European Union Marie Curie Excellence Grant “MULTIRAD” MEXT-CT-2006-042683 and in part by the EU FP7 Programs “LASERLAB-EUROPE” I and II.


  1. 1.
    R.R. Gattass, E. Mazur, Nat. Photon. 2, 219–225 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, Phys. Rev. Lett. 89, 186601 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, L. Berge, Phys. Rev. Lett. 87, 213902 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    S.S. Mao, F. Quéré, S. Guizard, X. Mao, R.E. Russo, G. Petite, P. Martin, Appl. Phys. A Mater. Sci. Process. 79, 1695–1709 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    E.G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    D.G. Papazoglou, S. Tzortzakis, Opt. Mater. Express 1, 625–632 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon, Phys. Rev. B 61, 11437–11450 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, M. Perdrix, Phys. Rev. B 55, 5799–5810 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    D.G. Papazoglou, I. Zergioti, S. Tzortzakis, Opt. Lett. 32, 2055–2057 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Opt. Commun. 171, 279–284 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    E. Bricchi, B.G. Klappauf, P.G. Kazansky, Opt. Lett. 29, 119–121 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    C. Hnatovsky, R.S. Taylor, P.P. Rajeev, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, Appl. Phys. Lett. 87, 014104 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    V.R. Bhardwaj, E. Simova, P.P. Rajeev, C. Hnatovsky, R.S. Taylor, D.M. Rayner, P.B. Corkum, Phys. Rev. Lett. 96, 057404 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    W. Yang, E. Bricchi, P.G. Kazansky, J. Bovatsek, A.Y. Arai, Opt. Express 14, 10117–10124 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    J. Noack, A. Vogel, IEEE J Quantum Electron 35, 1156–1167 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    A. Vogel, J. Noack, G. Huttman, G. Paltauf, Appl. Phys. B 81, 1015–1047 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    B. Hopp, Z. Toth, K. Gal, A. Mechler, Z. Bor, S.D. Moustaizis, S. Georgiou, C. Fotakis, Appl. Phys. Mater. Sci. Process. 69, S191–S194 (1999)ADSGoogle Scholar
  19. 19.
    F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, Appl. Phys. A 79, 869–873 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    S. Sowa, W. Watanabe, J. Nishii, K. Itoh, Appl. Phys. A 81, 1587–1590 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    D. Gomez, I. Goenaga, I. Lizuain, M. Ozaita, OptEn 44, 051105 (2005)ADSGoogle Scholar
  22. 22.
    G. Zhou, M. Ventura, M. Gu, A. Matthews, Y. Kivshar, Opt. Express 13, 4390–4395 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    C. Schaffer, N. Nishimura, E. Glezer, A. Kim, E. Mazur, Opt. Express 10, 196–203 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    C.L. Thomsen, D. Madsen, S.R. Keiding, J. Thogersen, O. Christiansen, JChPh 110, 3453–3462 (1999)ADSGoogle Scholar
  25. 25.
    S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamosauskas, R. Piskarskas, A. Dubietis, P. Di Trapani, Opt. Lett. 33, 86–88 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    G. Zhang, J.K. Thomas, J. Phys. Chem. A 102, 5465–5475 (1998)CrossRefGoogle Scholar
  27. 27.
    C.L. Arnold, A. Heisterkamp, W. Ertmer, H. Lubatschowski, Appl. Phys. B 80, 247–253 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    C.L. Arnold, A. Heisterkamp, W. Ertmer, H. Lubatschowski, Opt. Express 15, 10303–10317 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    M. Szadkowska-Nicze, J. Mayer, J. Polym. Sci. Part A Polym. Chem. 36, 1209–1215 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    A. Baum, P.J. Scully, M. Basanta, C.L.P. Thomas, P.R. Fielden, N.J. Goddard, W. Perrie, P.R. Chalker, Opt. Lett. 32, 190–192 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    A. Baum, P.J. Scully, W. Perrie, D. Jones, R. Issac, D.A. Jaroszynski, Opt. Lett. 33, 651–653 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    D.G. Papazoglou, S. Tzortzakis, Appl. Phys. Lett. 93, 041120 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    D. Abdollahpour, D.G. Papazoglou, S. Tzortzakis, Phys. Rev. A 84, 053809 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47–189 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    P.P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R.S. Taylor, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, Phys. Rev. Lett. 97, 253001 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    E. Hauge, S.A. Naroo, W.N. Charman, J. Cataract Refract. Surg. 27, 2026–2035 (2001)CrossRefGoogle Scholar
  37. 37.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    K.R. Siefermann, B. Abel, Angewandte Chemie Int Edition 50, 5264–5272 (2011)CrossRefGoogle Scholar
  39. 39.
    D.E. Hare, D.D. Dlott, Appl. Phys. Lett. 64, 715–717 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    S. Kuper, S. Modaressi, M. Stuke, J. Phys. Chem. 94, 7514–7518 (1990)CrossRefGoogle Scholar
  41. 41.
    T. Mitsuoka, A. Torikai, K. Fueki, J. Appl. Polym. Sci. 47, 1027–1032 (1993)CrossRefGoogle Scholar
  42. 42.
    L.M. Barker, R.E. Hollenbach, J. Appl. Phys. 41, 4208–4226 (1970)ADSCrossRefGoogle Scholar
  43. 43.
    R.M. Waxler, D. Horowitz, A. Feldman, Appl. Opt. 18, 101–104 (1979)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Electronic Structure and LaserFoundation for Research and Technology HellasHeraklionGreece
  2. 2.Materials Science and Technology DepartmentUniversity of CreteHeraklionGreece

Personalised recommendations