Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Controlled ultrashort-pulse laser-induced ripple formation on semiconductors

  • 887 Accesses

  • 30 Citations

Abstract

In this paper we review recent highlights of our research on the interaction of ultrafast laser pulses with surfaces with the aim of analyzing the fundamental mechanisms during micro/nanoprocessing of the irradiated surfaces and investigate the perspectives and applications arising from the irradiation of novel complex and functional materials with simple as well as temporally modulated femtosecond laser pulses. Our results on the irradiation of Si and ZnO surfaces show that the crater size and the ripple formation can be controlled by irradiation with properly temporally shaped laser pulses. Together with simulations of the dynamics of the phase changes of the material’s surface we show the potential for understanding and tailoring the engineering of smart optical materials at the micro- and nanoscale intended for novel optoelectronic applications and devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    B. Wu, M. Zhou, J. Li, X. Ye, G. Li, L. Cai, Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser. Appl. Surf. Sci. 256, 61–66 (2009)

  2. 2.

    N.M. Bulgakova, I.M. Burakov, Y.P. Meshcheryakov, R. Stoian, A. Rosenfeld, I.V. Hertel, Theoretical models and qualitative interpretations of Fs laser material processing. J Laser Micro Nanoen 2, 76–86 (2007)

  3. 3.

    A.Y. Vorobyev, C. Guo, Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 7, 385–407 (2013)

  4. 4.

    V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D.G. Papazoglou, I. Zergioti, Silicon electron emitters fabricated by ultraviolet laser pulses. Appl. Phys. Lett. 88, 081103 (2006)

  5. 5.

    D. Ashkenasi, G. Muller, A. Rosenfeld, R. Stoian, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Fundamentals and advantages of ultrafast micro-structuring of transparent materials. Appl. Phys. A-Mater. 77, 223–228 (2003)

  6. 6.

    E. Stratakis, Nanomaterials by ultrafast laser processing of surfaces. Sci. Adv. Mater. 4, 407–431 (2012)

  7. 7.

    K. Sugioka, Y. Cheng, Ultrafast laser processing: from micro- to nanoscale (Pan Stanford Publications, Singapore, 2013)

  8. 8.

    M. Beresna, M. Gecevicius, P.G. Kazansky, Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited]. Opt. Mater. Express 1, 783–795 (2011)

  9. 9.

    A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000)

  10. 10.

    V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf, Adv. Mater., 20 4049 (2008)

  11. 11.

    K.J. Sugioka, M. Meunier, A. Pique, Laser precision microfabrication (Springer, Berlin, 2010)

  12. 12.

    E. Stratakis, A. Ranella, C. Fotakis, Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications, Biomicrofluidics, 5, 013411 (2011)

  13. 13.

    J. Perriere, E. Millon, E. Fogarassy, Recent advances in laser processing of materials, ed. by Aufl, (Elsevier professional, [s.l.], 2006), p. 1

  14. 14.

    C.B. Arnold, A. Pique, Laser direct-write processing. MRS Bull. 32, 9–12 (2007)

  15. 15.

    P.N. Prasad, Introduction to biophotonics (Wiley-Interscience, Hoboken, 2003)

  16. 16.

    M. Lackner, Lasers in chemistry (Wiley-VCH, Weinheim, 2008)

  17. 17.

    E. Stratakis, A. Ranella, M. Farsari, C. Fotakis, Laser-based micro/nanoengineering for biological applications. Prog. Quant. Electron 33, 127–163 (2009)

  18. 18.

    E. Magoulakis, E.L. Papadopoulou, E. Stratakis, C. Fotakis, P.A. Loukakos, Ultrafast electron dynamics in ZnO/Si micro-cones. Appl. Phys. A-Mater. 98, 701–705 (2010)

  19. 19.

    J.K. Chen, J.E. Beraun, Modelling of ultrashort laser ablation of gold films in vacuum. J. Optics a-Pure Appl. Optics 5, 168–173 (2003)

  20. 20.

    K. Fushinobu, L.M. Phinney, N.C. Tien, Ultrashort-pulse laser heating of silicon to reduce microstructure adhesion. Int. J. Heat Mass. Tran. 39, 3181–3186 (1996)

  21. 21.

    V. Schmidt, W. Husinsky, G. Betz, Ultrashort laser ablation of metals: pump-probe experiments, the role of ballistic electrons and the two-temperature model. Appl. Surf. Sci. 197, 145–155 (2002)

  22. 22.

    T.E. Itina, O. Uteza, N. Sanner, M. Sentis, Interaction of femtosecond laser pulses with dielectric materials: insights from numerical modelling. J. Optoelectron. Adv. M 12, 470–473 (2010)

  23. 23.

    D. Bauerle, Laser processing and chemistry, 4th edn. (Springer, New York, 2011)

  24. 24.

    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Optical ablation by high-power short-pulse lasers. J. Optical Soc. Amer. B-Optical Phys. 13, 459–468 (1996)

  25. 25.

    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A-Mater., 63, 109–115 (1996)

  26. 26.

    F. Korte, S. Nolte, B.N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, H. Welling, Far-field and near-field material processing with femtosecond laser pulses. Appl. Phys. a-Mater. 69, S7–S11 (1999)

  27. 27.

    W.S. Fann, R. Storz, H.W.K. Tom, J. Bokor, Electron thermalization in gold. Phys. Rev. B 46, 13592–13595 (1992)

  28. 28.

    J. Hohlfeld, S.S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, E. Matthias, Electron and lattice dynamics following optical excitation of metals. Chem. Phys. 251, 237–258 (2000)

  29. 29.

    S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices––Micromachines can be created with higher resolution using two-photon absorption. Nature 412, 697–698 (2001)

  30. 30.

    M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3, 444–447 (2004)

  31. 31.

    R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, E.E.B. Campbell, Laser ablation of dielectrics with temporally shaped femtosecond pulses. Appl. Phys. Lett. 80, 353–355 (2002)

  32. 32.

    R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, N. M. Bulgakova, Temporal pulse manipulation and consequences for ultrafast laser processing of materials, Opt. Eng., 44, 051106 (2005)

  33. 33.

    A. Klini, P.A. Loukakos, D. Gray, A. Manousaki, C. Fotakis, Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses. Opt. Express 16, 11300–11309 (2008)

  34. 34.

    A.C. Forsman, P.S. Banks, M.D. Perry, E.M. Campbell, A.L. Dodell, M.S. Armas, Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals, J. Appl. Phys., 98, 033302 (2005)

  35. 35.

    M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Suppression of ablation in femtosecond double-pulse experiments, Phys. Rev. Lett., 103, 195002 (2009)

  36. 36.

    A. Semerok, C. Dutouquet, Ultrashort double pulse laser ablation of metals. Thin Solid Films 453–54, 501–505 (2004)

  37. 37.

    M. Li, S. Menon, J.P. Nibarger, G.N. Gibson, Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics. Phys. Rev. Lett. 82, 2394–2397 (1999)

  38. 38.

    I.H. Chowdhury, X.F. Xu, A.M. Weiner, Ultrafast double-pulse ablation of fused silica, Appl. Phys. Lett., 86, 151110 (2005)

  39. 39.

    N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, E.E.B. Campbell, Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials, Phys. Rev. B, 69, 054102 (2004)

  40. 40.

    D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, J. Bonse, Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO, J. Appl. Phys., 105, 034908 (2009)

  41. 41.

    M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, Origin of laser-induced near-sub-wavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062–4070 (2009)

  42. 42.

    E. V. Barmina, E. Stratakis, K. Fotakis, G.A. Shafeev, Generation of nanostructures on metals by laser ablation in liquids: new results, Quantum Electron+, 40, 1012–1020 (2010)

  43. 43.

    M. Birnbaum, Semiconductor surface damage produced by ruby lasers, J. Appl. Phys., 36, 3688 (1965)

  44. 44.

    A.Y. Vorobyev, V.S. Makin, C.L. Guo, Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals, J. Appl. Phys., 101, 034903 (2007)

  45. 45.

    J. Bonse, H. Sturm, D. Schmidt, W. Kautek, Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Appl. Phys. A-Mater. 71, 657–665 (2000)

  46. 46.

    Y. Shimotsuma, P.G. Kazansky, J.R. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses, Phys. Rev. Lett., 91, 247405 (2003)

  47. 47.

    M. Bolle, S. Lazare, Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet–laser radiation. J. Appl. Phys. 73, 3516–3524 (1993)

  48. 48.

    M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, Large area uniform nanostructures fabricated by direct femtosecond laser ablation. Opt. Express 16, 19354–19365 (2008)

  49. 49.

    T.Y. Choi, C.P. Grigoropoulos, Observation of femtosecond laser-induced ablation in crystalline silicon. J. Heat Trans.-T Asme. 126, 723–726 (2004)

  50. 50.

    T.Y. Choi, D.J. Hwang, C.P. Grigoropoulos, Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation. Appl. Surf. Sci. 197, 720–725 (2002)

  51. 51.

    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon sub-wavelength optics. Nature 424, 824–830 (2003)

  52. 52.

    G.D. Tsibidis, E. Stratakis, K.E. Aifantis, Thermoplastic deformation of silicon surfaces induced by ultrashort pulsed lasers in submelting conditions. J. Appl. Phys. 111, 053502 (2012)

  53. 53.

    E. Stratakis, A. Ranella, C. Fotakis, Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications. Biomicrofluidics 5, 013411 (2011)

  54. 54.

    J. Bonse, M. Munz, H. Sturm, Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J. Appl. Phys. 97, 013538 (2005)

  55. 55.

    J.E. Sipe, J.F. Young, J.S. Preston, H.M. Vandriel, Laser-induced periodic surface-structure 1. Theory. Phys. Rev. B 27, 1141–1154 (1983)

  56. 56.

    Z. Guosheng, P.M. Fauchet, A.E. Siegman, Growth of spontaneous periodic surface-structures on solids during laser illumination. Phys. Rev. B 26, 5366–5381 (1982)

  57. 57.

    J. Bonse, A. Rosenfeld, J. Kruger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys. 106, 104910 (2009)

  58. 58.

    T.J.Y. Derrien, T.E. Itina, R. Torres, T. Sarnet, M. Sentis, Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon. J. Appl. Phys. 114, 083104–083110 (2013)

  59. 59.

    O. Varlamova, F. Costache, J. Reif, M. Bestehorn, Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light. Appl. Surf. Sci. 252, 4702–4706 (2006)

  60. 60.

    G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions. Phys. Rev. B 86, 115316 (2012)

  61. 61.

    M. Barberoglou, G.D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, P. A. Loukakos, The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation, Appl. Phys. A 113, 273–283 (2013)

  62. 62.

    H.M. Vandriel, Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-Mu-M picosecond laser-pulses. Phys. Rev. B 35, 8166–8176 (1987)

  63. 63.

    J.K. Chen, D.Y. Tzou, J.E. Beraun, Numerical investigation of ultrashort laser damage in semiconductors. Int. J. Heat Mass Tran. 48, 501–509 (2005)

  64. 64.

    R. Kelly, A. Miotello, Comments on explosive mechanisms of laser sputtering. Appl. Surf. Sci. 96–8, 205–215 (1996)

  65. 65.

    J.H. Cho, D.F. Farson, J.O. Milewski, K.J. Hollis, Weld pool flows during initial stages of keyhole formation in laser welding. J. Phys. D Appl. Phys. 42, 175502 (2009)

  66. 66.

    L.D. Landau, E.M. Lifshitz, Fluid mechanics (2nd edn.), (1987)

  67. 67.

    K. Sokolowski-Tinten, D. von der Linde, Generation of dense electron–hole plasmas in silicon. Phys. Rev. B 61, 2643–2650 (2000)

  68. 68.

    J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1–87 (2007)

  69. 69.

    A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005)

  70. 70.

    D. Hulin, M. Combescot, J. Bok, A. Migus, J.Y. Vinet, A. Antonetti, Energy-transfer during silicon irradiation by femtosecond laser-pulse. Phys. Rev. Lett. 52, 1998–2001 (1984)

  71. 71.

    J. Bonse, J. Kruger, Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon. J. Appl. Phys. 108, 034903 (2010)

  72. 72.

    S. Amoruso, R. Bruzzese, X. Wang, J. Xia, Ultrafast laser ablation of metals with a pair of collinear laser pulses. Appl. Phys. Lett. 93, 191504 (2008)

  73. 73.

    S. Hohm, A. Rosenfeld, J. Kruger, J. Bonse, Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation. Appl. Surf. Sci. 278, 7–12 (2013)

  74. 74.

    E.L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, P.A. Loukakos, Laser induced forward transfer of metal oxides using femtosecond double pulses. Appl. Surf. Sci. 257, 508–511 (2010)

  75. 75.

    A. Rosenfeld, M. Rohloff, S. Hohm, J. Kruger, J. Bonse, Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse irradiation sequences. Appl. Surf. Sci. 258, 9233–9236 (2012)

  76. 76.

    M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, I.V. Hertel, Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon. Appl. Phys. Lett. 83, 1474–1476 (2003)

  77. 77.

    R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, Dynamic temporal pulse shaping in advanced ultrafast laser material processing. Appl. Phys. A-Mater. 77, 265–269 (2003)

  78. 78.

    S. Hohm, M. Rohloff, A. Rosenfeld, J. Kruger, J. Bonse, Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences. Appl. Phys. A Mater. Sci. Proc. 110, 553–557 (2013)

  79. 79.

    M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Suppression of ablation in femtosecond double-pulse experiments. Phys. Rev. Lett. 103, 195002 (2009)

  80. 80.

    M. Rohloff, S.K. Das, S. Hohm, R. Grunwald, A. Rosenfeld, J. Kruger, J. Bonse, Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences. J. Appl. Phys. 110, 014910 (2011)

  81. 81.

    N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, W. Marine, E.E.B. Campbell, A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of coulomb explosion. Appl. Phys. A-Mater. 81, 345–356 (2005)

  82. 82.

    M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P.A. Loukakos, E. Stratakis, Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses. Opt. Express 21, 18501–18508 (2013)

  83. 83.

    C.B. Li, D.H. Feng, T.Q. Jia, H.Y. Sun, X.X. Li, S.Z. Xu, X.F. Wang, Z.Z. Xu, Ultrafast dynamics in ZnO thin films irradiated by femtosecond lasers. Solid State Commun. 136, 389–394 (2005)

  84. 84.

    M.A. M. Versteegh, T. Kuis, H.T.C. Stoof, J.I. Dijkhuis, Ultrafast screening and carrier dynamics in ZnO: theory and experiment, Phys. Rev. B, 84, 035207 (2011)

Download references

Acknowledgments

This work was supported by the Integrated Initiative of European Laser Research Infrastructures LASERLAB-II (Grant Agreement No. 228334). G.D.T. and E.S. acknowledge financial support from the ‘3DNeuroscaffolds’ research project.

Author information

Correspondence to P. A. Loukakos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsibidis, G.D., Stratakis, E., Loukakos, P.A. et al. Controlled ultrashort-pulse laser-induced ripple formation on semiconductors. Appl. Phys. A 114, 57–68 (2014). https://doi.org/10.1007/s00339-013-8113-5

Download citation

Keywords

  • Ultrashort Laser Pulse
  • Molten Material
  • Recoil Pressure
  • Surface Plasmon Wave
  • Pulse Separation