Skip to main content
Log in

Fabrication of 3D microfluidic structures inside glass by femtosecond laser micromachining

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Femtosecond lasers have opened up new avenues in materials processing due to their unique characteristics of ultrashort pulse widths and extremely high peak intensities. One of the most important features of femtosecond laser processing is that a femtosecond laser beam can induce strong absorption in even transparent materials due to nonlinear multiphoton absorption. This makes it possible to directly create three-dimensional (3D) microfluidic structures in glass that are of great use for fabrication of biochips. For fabrication of the 3D microfluidic structures, two technical approaches are being attempted. One of them employs femtosecond laser-induced internal modification of glass followed by wet chemical etching using an acid solution (Femtosecond laser-assisted wet chemical etching), while the other one performs femtosecond laser 3D ablation of the glass in distilled water (liquid-assisted femtosecond laser drilling). This paper provides a review on these two techniques for fabrication of 3D micro and nanofluidic structures in glass based on our development and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Küper, M. Stuke, Appl. Phys. Lett. 54, 4 (1989)

    Article  ADS  Google Scholar 

  2. S. Küper, M. Stuke, Microelectron. Eng. 9, 475 (1989)

    Article  Google Scholar 

  3. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  4. E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.H. Her, J.P. Callan, E. Mazur, Opt. Lett. 21, 2023 (1996)

    Article  ADS  Google Scholar 

  5. K. Itoh, W. Watanabe, S. Nolte, C.B. Schaffer, MRS Bull. 31, 620 (2006)

    Article  Google Scholar 

  6. K. Sugioka, Y. Cheng, Lab Chip 12, 3576 (2012)

    Google Scholar 

  7. H.B. Sun, S. Matsuo, H. Misawa, Appl. Phys. Lett. 74, 786 (1999)

    Article  ADS  Google Scholar 

  8. T. Ikegami, R. Ozawa, M. P. Stocker, K. Monako, J. Foukas, S. Maruo, J. Laser Micro/Nanoengin. 8, 6 (2013)

    Google Scholar 

  9. B.B. Xu, Y.L. Zhang, H. Xia, W.F. Dong, H. Ding, H.B. Sun, Lab Chip 13, 1677 (2013)

    Article  Google Scholar 

  10. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26, 277 (2001)

    Article  ADS  Google Scholar 

  11. M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, K. Midorikawa, Appl. Phys. A76, 857 (2003)

    Article  ADS  Google Scholar 

  12. K. Sugioka, Y. Cheng, K. Midorikawa, Appl. Phys. A81, 1 (2005)

    Article  ADS  Google Scholar 

  13. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, Y. Jiang, Opt. Lett. 26, 1912 (2001)

    Article  ADS  Google Scholar 

  14. K. Ke, E.F. Hasselbrink Jr, A.J. Hunt, Anal. Chem. 77, 5083 (2005)

    Article  Google Scholar 

  15. Y. Liao, Y. Ju, L. Zhang, F. He, Q. Zhang, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, Opt. Lett. 35, 3225 (2010)

    Article  ADS  Google Scholar 

  16. Z. Wang, K. Sugioka, K. Midorikawa, Appl. Phys. A93, 225 (2008)

    Article  ADS  Google Scholar 

  17. A. Crespi, Y. Gu, B. Ngamsom, H.J.W.M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerulloa, R. Osellame, Lab Chip 10, 1167 (2010)

    Google Scholar 

  18. Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, K. Midorikawa, Lab Chip 11, 2109 (2011)

    Article  Google Scholar 

  19. Y. Hanada, K. Sugioka, K. Midorikawa, Lab Chip 12, 3688 (2012)

    Article  Google Scholar 

  20. Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappuis, M. Kral, R. Clavel, F. Barrot, J.M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, J. Lopez, Laser Micro/Nanoengin. 7, 1 (2012)

    Article  Google Scholar 

  21. Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, T. Yoko, Jpn. J. Appl. Phys. 38, L1146 (1999)

  22. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, Opt. Lett. 28, 1144 (2003)

    Article  ADS  Google Scholar 

  23. S.D. Stookey, US Patent, No 2515937 (1950)

  24. M. Masuda, K. Sugioka, Y. Cheng, T. Hongo, K. Shihoyama, H. Takai, I. Miyamoto, K. Midorikawa, Appl. Phys. A78, 1029 (2004)

    Article  ADS  Google Scholar 

  25. Z. Wang, K. Sugioka, Y. Hanada, K. Midorikawa, Appl. Phys. A88, 699 (2007)

    Article  ADS  Google Scholar 

  26. Z. Wang, K. Sugioka, K. Midorikawa, Appl. Phys. A89, 951 (2007)

    Article  ADS  Google Scholar 

  27. Y. Hanada, K. Sugioka, H. Kawano, I. Shihira-Ishikawa, A. Miyawaki, K. Midorikawa, Biomed. Microdevice 10, 403 (2008)

    Article  Google Scholar 

  28. Y. Hanada, K. Sugioka, H. Kawano, I. Shihira-Ishikawa, A. Miyawaki, K. Midorikawa, Appl. Surf. Sci. 255, 9893 (2009)

    Article  ADS  Google Scholar 

  29. T.N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, C.B. Schaffer, Appl. Phys. Lett. 86, 201106 (2005)

    Article  ADS  Google Scholar 

  30. C. Liu, Y. Liao, F. He, J. Song, D. Lin, Y. Cheng, K. Sugioka, K. Midorikawa, J. Laser Micro/Nanoeng. 8, 170 (2013)

    Article  Google Scholar 

  31. D. Chen, H. Miyoshi, T. Akai, T. Yazawa, Appl. Phys. Lett. 86, 231908 (2005)

    Article  ADS  Google Scholar 

  32. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, Lab Chip 12, 746 (2012)

    Article  Google Scholar 

  33. Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, K. Midorikawa, Lab Chip 13, 1626 (2013)

    Article  Google Scholar 

  34. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  35. K. Sugioka, Y. Hanada, K. Midorikawa, Laser Photon. Rev. 4, 386 (2010)

    Article  Google Scholar 

  36. M. Kim, D.J. Hwang, H. Jeon, K. Hiromatsu, C.P. Grigoropoulos, Lab Chip 9, 311 (2009)

    Article  Google Scholar 

  37. F. Bragheri, L. Ferrara, N. Bellini, K.C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, I. Cristiani, J Biophotonics 3, 234 (2010)

    Article  Google Scholar 

  38. N. Bellini, K.C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, R. Osellame, Opt Express 18, 4679 (2010)

    Article  ADS  Google Scholar 

  39. A. Schaap, Y. Bellouard, T. Rohrlack, Opt Express 2, 658 (2011)

    Google Scholar 

  40. A. Schaap, T. Rohrlack, Y. Bellouard, Lab Chip 12, 1527 (2012)

    Article  Google Scholar 

  41. A. Schaap, T. Rohrlack, Y. Bellouard, J Biophotonics 5, 8 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Sugioka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugioka, K., Cheng, Y. Fabrication of 3D microfluidic structures inside glass by femtosecond laser micromachining. Appl. Phys. A 114, 215–221 (2014). https://doi.org/10.1007/s00339-013-8107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8107-3

Keywords

Navigation