Skip to main content
Log in

Femtosecond-laser-induced bond breaking and structural modifications in silicon, TiO\(_2\), and defective graphene: an ab initio molecular dynamics study

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By exciting or heating electrons, ultrashort laser pulses have a direct influence on bond strengths in two- and three-dimensional solids. Here, we present results of ab initio molecular dynamics simulations performed using our in-house Code for Highly-excIted Valence Electron Systems (CHIVES) for three systems, which each shows a distinctly different structural response to a femtosecond laser pulse. In solid silicon, we show that ultrafast laser-induced bond breaking leads to nonthermal melting, a process which occurs in three stages, involving subsequently superdiffusive, fractionally diffusive, and normally diffusive atomic motions. For TiO\(_2\), we find that the A\(_{1g}\) phonon is coherently excited. At room temperature, we demonstrate that these oscillations are strongly coupled to other phonon modes. In graphene with a single Stone–Wales defect, we study the in-plane and out-of-plane laser-induced atomic motions and find bond breaking, which destroys the structure, when the electrons are heated to at least 31,000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Cavalleri, C.S. Tóth, C.W. Siders, J.A. Squier, F. Ráksi, P. Forget, J.C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001)

    Article  ADS  Google Scholar 

  2. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J.C. Woo, D.S. Kim, M. Woerner, T. Elsaesser, Science 306, 1771 (2004)

    Google Scholar 

  3. F. Carbone, P. Baum, P. Rudolf, A.H. Zewail, Phys. Rev. Lett. 100, 035501 (2008)

    Article  ADS  Google Scholar 

  4. R.J.D. Miller, R. Ernstorfer, M. Harb, M. Gao, C.T. Hebeisen, H. Jean-Ruel, C. Lu, G. Moriena, G. Sciaini, Acta Cryst. A 66, 137 (2010)

    Article  Google Scholar 

  5. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, D. von der Linde, Nature 422, 287 (2003)

    Article  ADS  Google Scholar 

  6. M. Hase, M. Kitajima, A.M. Constantinescu, H. Petek, Nature 426, 51 (2003)

    Article  ADS  Google Scholar 

  7. E.M. Bothschafter, A. Paarmann, E.S. Zijlstra, N. Karpowicz, M.E. Garcia, R. Kienberger, R. Ernstorfer, Phys. Rev. Lett. 110, 067402 (2013)

    Article  ADS  Google Scholar 

  8. E.S. Zijlstra, L.L. Tatarinova, M.E. Garcia, Phys. Rev. B 74, 220301 (2006)

    Article  ADS  Google Scholar 

  9. S.L. Johnson, P. Beaud, E. Vorobeva, C.J. Milne, É.D. Murray, S. Fahy, G. Ingold, Phys. Rev. Lett. 102, 175503 (2009)

    Article  ADS  Google Scholar 

  10. E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Phys. Rev. X 3, 011005 (2013)

    Google Scholar 

  11. K. Nasu (ed.), Photoinduced Phase Transitions (World Scientific, New Jersey, 2004)

  12. S. Wall, D. Wegkamp, L. Foglia, K. Appavoo, J. Nag, R.F. Haglund Jr., J. Stähler, M. Wolf, Nat. Commun. 3, 721 (2012)

    Google Scholar 

  13. K. Sokolowski-Tinten, J. Bialkowski, D. von der Linde, Phys. Rev. B 51, 14186 (1998)

    Article  ADS  Google Scholar 

  14. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. Horn von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, M. Kammler, Phys. Rev. Lett. 87, 225701 (2001)

    Article  ADS  Google Scholar 

  15. M. Harb, R. Ernstorfer, C.T. Hebeisen, G. Sciaini, W. Peng, T. Dartigalongue, M.A. Eriksson, M.G. Lagally, S.G. Kruglik, R.J.D. Miller, Phys. Rev. Lett. 100, 155504 (2008)

    Article  ADS  Google Scholar 

  16. P. Stampfli, K.H. Bennemann, Phys. Rev. B 42, 7163 (1990)

    Article  ADS  Google Scholar 

  17. P. Stampfli, K.H. Bennemann, Phys. Rev. B 46, 10686 (1992)

    Article  ADS  Google Scholar 

  18. P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996)

    Article  ADS  Google Scholar 

  19. E.S. Zijlstra, N. Huntemann, M.E. Garcia, New J. Phys. 10, 033010 (2008)

    Article  ADS  Google Scholar 

  20. H.O. Jeschke, M.E. Garcia, K.H. Bennemann, Phys. Rev. B 60, R3701 (1999)

    Article  ADS  Google Scholar 

  21. H.O. Jeschke, M.E. Garcia, K.H. Bennemann, Phys. Rev. Lett. 87, 015003 (2001)

    Google Scholar 

  22. H.O. Jeschke, M.E. Garcia, K.H. Bennemann, J. Appl. Phys. 91, 18 (2002)

    Google Scholar 

  23. T. Dumitrica, A. Burzo, Y. Dou, R.E. Allen, Phys. Status Solidi. 241, 1438 (2004)

    Article  Google Scholar 

  24. V. Recoules, J. Clérouin, G. Zérah, P.M. Anglade, S. Mazevet, Phys. Rev. Lett. 96, 055503 (2006)

    Article  ADS  Google Scholar 

  25. E.S. Zijlstra, J. Walkenhorst, M.E. Garcia, Phys. Rev. Lett. 101, 135701 (2008)

    Article  ADS  Google Scholar 

  26. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  27. E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Adv. Mater. 25, 5605 (2013)

    Google Scholar 

  28. H.J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 45, 768 (1992)

    Article  ADS  Google Scholar 

  29. T. Dumitricva, M.E. Garcia, H.O. Jeschke, B.I. Yakobson, Phys. Rev. B 74, 193406 (2006)

    Article  ADS  Google Scholar 

  30. A. Gambetta, C. Manzoni, E. Menna, M. Meneghetti, G. Cerullo, G. Lanzani, S. Tretiak, A. Piryatinski, A. Saxena, R.L. Martin, A.R. Bishop, Nat. Phys. 2, 515 (2006)

    Article  Google Scholar 

  31. P. Tangney, S. Fahy, Phys. Rev. B 65, 054302 (2002)

    Article  ADS  Google Scholar 

  32. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  33. S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996)

    Article  ADS  Google Scholar 

  34. C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 58, 3641 (1998)

    Article  ADS  Google Scholar 

  35. E.S. Zijlstra, N. Huntemann, A. Kalitsov, M.E. Garcia, U. von Barth, Modelling Simul. Mater. Sci. Eng. 17, 015009 (2009)

    Article  ADS  Google Scholar 

  36. X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D.R. Hamann, D.C. Allan, Zeit. Kristallogr. 220, 558 (2005)

    Google Scholar 

  37. K.H. Bennemann, J. Phys. Condens. Matter. 23, 073202 (2011)

    Article  ADS  Google Scholar 

  38. C.V. Shank, R. Yen, C. Hirlimann, Phys. Rev. Lett. 50, 454 (1983)

    Article  ADS  Google Scholar 

  39. H.W.K. Tom, G.D. Aumiller, C.H. Brito-Cruz, Phys. Rev. Lett. 60, 1438 (1988)

    Article  ADS  Google Scholar 

  40. D.S. Banks, C. Fradin, Biophys. 89, 2960 (2005)

    Google Scholar 

  41. D. Ernst, M. Hellmann, J. Kohler, M. Weiss, Soft Matter 8, 4886 (2012)

    Article  ADS  Google Scholar 

  42. I. Štich, R. Car, M. Parinello, Phys. Rev. Lett. 63, 2240 (1989)

    Article  ADS  Google Scholar 

  43. V.P. Zhukov, E.V. Chulkov, J. Phys, Condens. Matter. 22, 435802 (2010)

    Article  ADS  Google Scholar 

  44. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5, 26 (2011)

    Article  Google Scholar 

  45. E. Bitzek, P. Koskinen, F. Gähler, Phys. Rev. Lett. 97, 170201 (2006)

    Article  ADS  Google Scholar 

  46. J. Ma, D. Alfè, A. Michaelides, E. Wang, Phys. Rev. B 80, 033407 (2009)

    Article  ADS  Google Scholar 

  47. F. Valencia, A.H. Romero, H.O. Jeschke, M.E. Garcia, Phys. Rev. B 74, 075409 (2006)

    Article  ADS  Google Scholar 

  48. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

Figure 5 was drawn using the package from [48]. The authors thank DFG, project GA465/15-1, for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin E. Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zijlstra, E.S., Zier, T., Bauerhenne, B. et al. Femtosecond-laser-induced bond breaking and structural modifications in silicon, TiO\(_2\), and defective graphene: an ab initio molecular dynamics study. Appl. Phys. A 114, 1–9 (2014). https://doi.org/10.1007/s00339-013-8080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8080-x

Keywords

Navigation