Skip to main content
Log in

Chromium oxide dissolution in steels via short pulse laser processing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Changes of microstructure, chemical and phase compositions in thin surface layers of low carbon steel saturated by chromium oxide have been studied by TEM, XPS and XRD methods. Ultrafine chromium oxide powder was spread on a steel surface and subjected to laser processing with nanosecond pulses. It was found that such conditions of processing as overheating of small volume of metal, high temperature gradient, rapid solidification and laser-induced plasma formation lead to dissolution of chromium oxide in the metal matrix. As a result of laser processing the surface layers contain chromium oxide, chrome-spinel FeO\(\cdot \)Cr\(_{2}\)O\(_{3}\) and chromium in metal state dispersed in alpha and gamma iron. The processing technique allows to obtain surface layers whose chemical composition might be equivalent to the composition of stainless steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.E. Stansbury, E.E. Buchanan, Fundamentals of Electrochemical Corrosion, 1st edn. (ASM International, New York, 2000)

    Google Scholar 

  2. N.D. Tomashov, Theory of Corrosion and Protection of Metals (Akad. Nauk SSSR, Moscow, 1960)

    Google Scholar 

  3. L.L. Shrier, Corrosion, 1st edn. (Butterworths, London, 1977)

    Google Scholar 

  4. A.M. Huntz, Math. Sci. Eng. A 121, 555 (1989)

    Article  Google Scholar 

  5. S. Beauvais-Reveillon et al., Oxid. Met. 43, 3–4 (1995)

    Article  Google Scholar 

  6. J. Tuominen et al., J. Therm. Spray Technol. 11, 2 (2002)

    Article  Google Scholar 

  7. P.S. Robbert, H. Geisler, C.A. Ventrice Jr, J. van Ek, S. Chaturvedi, J.A. Rodriguez, M. Kuhn, U. Diebold, J. Vac. Sci. Technol. A16, 990 (1998)

  8. T. Maruyama, H. Akagi, J. Electrochem. Soc. 143 (1996)

  9. N. Popovici, M.L. Parames, R.C. Da Silva, O. Monnereau, P.M. Sousa, A.J. Silvestre, O. Conde, Appl. Phys. A 79, 1409–1411 (2004)

    Article  ADS  Google Scholar 

  10. E.V. Kharanzhevskiy, M.D. Krivilyov, Phys. Met. Metallogr. 111, 1 (2011)

    Google Scholar 

  11. S.N. Kostenkov, E.V. Kharanzhevskii, M.D. Krivilev, Phys. Met. Metallogr. 113, 1 (2012)

    Google Scholar 

  12. J.P. Kruth, L. Froyen, J. Van Vaerenbergh et al., J. Mater. Process. Technol. 149 (2004)

  13. V.D. Sadovskiy, L.V. Smirnov, V.M. Schastlivtsev et al., Phys. Met. Metallogr. 65, 1 (1989)

    Google Scholar 

  14. V.M. Schastlivtsev, T.I. Tabatchikova, I.L. Yakovleva et al., Phys. Met. Metallogr. 84, 4 (1997)

    Google Scholar 

  15. T.I. Tabatchikova, Phys. Met. Metallogr. 84, 4 (1997)

    Google Scholar 

  16. E.V. Haranzhevskii, D.A. Danilov, M.D. Krivilyov, P.K. Galenko, Mater. Sci. Eng. A, 375–377 (2004)

  17. Y.Y. Andreev, I.A. Safonov, A.V. Doub, Prot. Met. Phys. Chem. Surf. 46, 5 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This study is financially supported by the program 07.08 “Applied Research in Education” of the Ministry of Education and Science of Russia (2.947.2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Kharanzhevskiy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharanzhevskiy, E., Reshetnikov, S. Chromium oxide dissolution in steels via short pulse laser processing. Appl. Phys. A 115, 1469–1477 (2014). https://doi.org/10.1007/s00339-013-8064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8064-x

Keywords

Navigation