Skip to main content
Log in

Estimation of electron density and temperature of semiconductor surfaces excited by ultra-short laser pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A simple technique, based on the interference principle, to obtain simultaneously the instantaneous electron density and temperature of ultra-short laser-excited semiconductor surface plasma is proposed and demonstrated. The interference of the incident laser and the surface plasmons forms nano-ripples on the surface. From the observed nano-ripple period, one can easily retrieve the density and temperature information. As a demonstration of the technique, the electron density and temperature are obtained for various band gap semiconductor materials based on the experimentally observed nano-ripples using 800 and 400 nm light in various ambient media and incident angles. The electron density estimated varied in the range of 2\(n_{\mathrm{c} }\)–10\(n_{\mathrm{c}}\) and the corresponding electron temperature in the range 10\(^{4}\)–10\(^{5}\) K, depending on the material band gap, the incident laser intensity, the ambient medium, the angle of incidence, and the laser wavelength. The information of the electron density and temperature is useful for choosing laser parameters (like fluence, wavelength, angle of incidence, ambient medium) and target materials (different band gap semiconductors) for obtaining a better size controllability of the nanostructure production. The information can also help one in obtaining essential plasma parameter inputs in the quest for understanding ultra-fast melting or understanding the pre-plasma conditions created by the pre-pulse of ultra-high intensity laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Perrière, É. Millon, É. Fogarassy, Recent Advances in Laser Processing of Materials (Elsevier, Amsterdam, 2006)

    Google Scholar 

  2. A.Y. Vorobyev, C. Guo, Appl. Phys. Lett. 92, 041914 (2008)

    Article  ADS  Google Scholar 

  3. S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, Y. Lereah, Phys. Rev. B 69, 144119 (2004)

    Article  ADS  Google Scholar 

  4. S. Amoruso, R. Bruzzese, M. Vitiello, N.N. Nedialkov, P.A. Atanasov, J. Appl. Phys. 98, 044907 (2005)

    Article  ADS  Google Scholar 

  5. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, L. Lanotte, Appl. Phys. Lett. 84, 4502 (2004)

    Article  ADS  Google Scholar 

  6. U. Chakravarty, P.A. Naik, C. Mukherjee, S.R. Kumbhare, P.D. Gupta, J. Appl. Phys. 108, 053107 (2010)

    Article  ADS  Google Scholar 

  7. S. Lal, S. Link, N.J. Halas, Nat. Photon. 1, 641 (2007)

    Article  ADS  Google Scholar 

  8. I. Lynch, K.A. Dawson, Nano Today 3, 40 (2008)

    Article  Google Scholar 

  9. T.E. Glover, J. Opt. Soc. Am. B. 20, 125 (2003)

    Article  ADS  Google Scholar 

  10. A. Borowiec, H.K. Haugen, Appl. Phys. Lett. 82, 4462 (2003)

    Article  ADS  Google Scholar 

  11. J. Bonse, A. Rosenfeld, J. Krüger, J. Appl. Phys. 106, 104910 (2009)

    Article  ADS  Google Scholar 

  12. S. Sakabe, M. Hashida, S. Tokita, S. Namba, K. Okamuro, Phys. Rev. B 79, 033409 (2009)

    Article  ADS  Google Scholar 

  13. U. Chakravarty, R.A. Ganeev, P.A. Naik, J.A. Chakera, M. Babu, P.D. Gupta, J. Appl. Phys. 109, 084347 (2011)

    Article  ADS  Google Scholar 

  14. A. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Phys. Rev. Lett. 82, 19 (1999)

    Article  Google Scholar 

  15. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996)

    Article  ADS  Google Scholar 

  16. L. Jiang, H.L. Tsai, J. Appl. Phys. 100, 023116 (2006)

    Article  ADS  Google Scholar 

  17. P.P. Rajeev, S. Sengupta, A. Das, P. Taneja, P. Ayyub, P. K. Kaw, G.R. Kumar, Appl. Phys. B 80, 1015 (2005)

    Google Scholar 

  18. A.S. Sandhu, A.K. Dharmadhikari, G.R. Kumar, J. Appl. Phys. 97, 023526 (2005)

    Article  ADS  Google Scholar 

  19. T. Auguste, P. D’OliveĨra, S. Hulin, P. Monot, J. Abdallah Jr, A. Ya, Faenov, I. Yu. Skobelev, A. I. Magunov, T. A. Pikuz. JETP Lett. 72, 38 (2000)

    Google Scholar 

  20. D.S. Uryupina, K.A. Ivanov, A.V. Brantov, A.B. Savel’ev, V.Yu. Bychenkov, M.E. Povarnitsyn, R.V. Volkov, V.T. Tikhonchuk. Phys. Plasmas 19, 013104 (2012)

  21. M. Zepf, G.D. Tsakiris, G. Pretzler, I. Watts, D.M. Chambers, P.A. Norreys, U. Andiel, A.E. Dangor, K. Eidmann, C. Gahn, A. Machacek, J.S. Wark, K. Witte, Phys. Rev. E 58, R5253 (1998)

    Article  ADS  Google Scholar 

  22. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-Ter-Vehn, S.I. Anisimov, Phys. Rev. Lett. 81, 224 (1998)

    Article  ADS  Google Scholar 

  23. K. Sokolowski-Tinten, J. Bialkowski, Appl. Surf. Sci. 109–110, 1 (1997)

    Google Scholar 

  24. L. Huang, Y. Yang, Y. Wang, Z. Zheng, W. Su, J. Phys. D Appl. Phys. 42, 045502 (2009)

    Article  ADS  Google Scholar 

  25. K. Sokolowski-Tinten, D. von der Linde, Phys. Rev. B 61, 2643 (2000)

    Article  ADS  Google Scholar 

  26. Y.B.S.R. Prasad, S. Barnwal, P.A. Naik, J.A. Chakera, P.D. Gupta, J. Appl. Phys. 110, 023305 (2011)

    Article  ADS  Google Scholar 

  27. T.Y. Hwang, A.Y. Vorobyev, C. Guo, Appl. Phys. Lett. 95, 123111 (2009)

    Article  ADS  Google Scholar 

  28. G. Obara, Y. Tanaka, N.N. Nedyalkov, M. Terakawa, M. Obara, Appl. Phys. Lett. 99, 061106 (2011)

    Article  Google Scholar 

  29. J. Wang, C. Guo, J. Appl. Phys. 102, 053522 (2007)

    Article  ADS  Google Scholar 

  30. N.S. Shcheblanov, E.P. Silaeva, T.E. Itina, Appl. Surf. Sci. 258, 9417 (2012)

    Article  ADS  Google Scholar 

  31. S.K. Sundaram, E. Mazur, Nat. Mater. 1, 217 (2002)

    Article  ADS  Google Scholar 

  32. C.V. Shank, R. Yen, C. Hirlimann, Phys. Rev. Lett. 50, 454 (1983)

    Google Scholar 

  33. D. Scuderi, O. Albert, D. Moreau, P.P. Pronko, J. Etchepare, Appl. Phys. Lett. 86, 071502 (2005)

    Article  ADS  Google Scholar 

  34. T.J.Y. Derrien, R. Torres, T. Sarnet, M. Sentis, T.E. Itina, Appl. Surf. Sci. 258, 9487 (2012)

    Article  ADS  Google Scholar 

  35. K. Loeschner, G. Seifert, A. Heilmann, J. Appl. Phys. 108, 073114 (2010)

    Article  ADS  Google Scholar 

  36. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, J. Fujita, Opt. Exp. 20, 14848 (2012)

    Article  Google Scholar 

  37. F. Garrelie, J.P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, O. Parriaux, Opt. Exp. 19, 9035 (2011)

    Google Scholar 

  38. M. Huang, F.L. Zhao, Y. Cheng, N. Xu, Z. Xu, ACS Nano 3, 4062 (2009)

  39. G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Phys. Rev. B 86, 115316 (2012)

    Article  ADS  Google Scholar 

  40. Y. Han, S. Qu, Chem. Phys. Lett. 495, 241–244 (2010)

    Article  ADS  Google Scholar 

  41. J. Bonse, J. Krüger, J. Appl. Phys. 108, 034903 (2010)

    Article  ADS  Google Scholar 

  42. L.S. Jiao, E.Y.K. Ng, H.Y. Zheng, Appl. Surf. Sci. 264, 52–55 (2013)

    Article  ADS  Google Scholar 

  43. C.W. Luo, W.T. Tang, H.I. Wang, L.W. Liao, H.P. Lo, K.H. Wu, J.Y. Lin, J.Y. Juang, T.M. Uen, T. Kobayashi, Supercond. Sci. Technol. 25, 115008 (2012)

    Article  ADS  Google Scholar 

  44. G. Miyaji, K. Miyazaki, Opt. Exp. 16, 16265 (2008)

    Article  ADS  Google Scholar 

  45. G. Miyaji, K. Miyazaki, Appl. Phys. Lett. 89, 191902 (2006)

    Article  ADS  Google Scholar 

  46. S.H. Kim, K.H. Byun, I.B. Sohn, S.H. Jeong, Appl. Phys. B, 1–8 (2013) doi:10.1007/s00340-013-5476-4

  47. A.Y. Vorobyev, C. Guo, J. Appl. Phys. 110, 043102 (2011)

    Article  ADS  Google Scholar 

  48. R. Ramis, K. Eidmann, J. Meyer-Ter-Vehn, S. Hüller, Comput. Phys. Commun. 183(3), 637–655 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  49. R. Ramis, R. Schmalz, J. Meyer-ter-Vehn, Comput. Phys. Commun. 49(3), 475–505 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Chakravarty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarty, U., Naik, P.A., Chakera, J.A. et al. Estimation of electron density and temperature of semiconductor surfaces excited by ultra-short laser pulses. Appl. Phys. A 115, 1457–1467 (2014). https://doi.org/10.1007/s00339-013-8063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8063-y

Keywords

Navigation