Skip to main content
Log in

Full three-dimensional imaging via ground penetrating radar: assessment in controlled conditions and on field for archaeological prospecting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper deals with an advanced microwave tomographic approach capable of providing full 3D images of buried targets from scattered field data gathered by means of Ground Penetrating Radar (GPR) systems. The approach is based on an approximated model of the scattering phenomenon and it is capable of accounting for the vectorial nature of the interactions occurring between electromagnetic waves and probed materials. Moreover, the Truncated Singular Value Decomposition inversion scheme is exploited to solve the involved linear inverse scattering problem in a stable and accurate way. The advantages offered by the full 3D inversion algorithm with respect to a commonly adopted strategy, which produces 3D images by interpolating 2D reconstructions, are assessed against GPR data gathered in laboratory controlled conditions. Moreover, to provide an example of the full 3D imaging capabilities in on field conditions, we report on a GPR measurement campaign carried out at Grotte dell’Angelo, Pertosa, (SA), Southern Italy, one of the most famous sites of the Cilento and Vallo di Diano geopark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Daniels, Ground penetrating radar, 2nd edn. (IEE Press, London, 2004)

    Book  Google Scholar 

  2. A.S. Turk, K.A. Hocaoglu, A.A. Vertiy, Subsurface Sensing (Wiley, New York, 2011)

  3. H.M. Jol, Ground Penetrating Radar: Theory and Applications (Elsevier Science, Oxford, 2009). ISBN 978-0-444-53348-7

    Google Scholar 

  4. D. Goodman, S. Piro, GPR Remote Sensing in Archaeology, Springer Series “Geotechnologies and the Environment”, vol. 9 (2013). ISBN: 978-3-642-31856-6

  5. W.C. Chew, Waves and Fields in Inhomogeneous Media, 2nd edn. (IEEE, New York, 1995)

    Google Scholar 

  6. M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, Bristol, 1998)

    Book  MATH  Google Scholar 

  7. G. Leone, F. Soldovieri, Analysis of the distorted Born approximation for subsurface reconstruction: truncation and uncertainties effect. IEEE Trans. Geosci. Remote Sens. 41, 66–74 (2003)

    Article  ADS  Google Scholar 

  8. R. Pierri, A. Liseno, R. Solimene, F. Soldovieri, Beyond physical optics SVD shape reconstruction of metallic cylinders. IEEE Trans. Antennas Propag. 54(2), 655–665 (2006)

    Article  ADS  Google Scholar 

  9. F. Soldovieri, J. Hugenschmidt, R. Persico, G. Leone, A linear inverse scattering algorithm for realistic GPR applications. Near Surf. Geophys. 5(1), 29–42 (2007)

    Google Scholar 

  10. F. Soldovieri, A. Brancaccio, G. Prisco, G. Leone, R. Pierri, A Kirchhoff-based shape reconstruction algorithm for the multimonostatic configuration: the realistic case of buried pipes. IEEE Trans. Geosci. Remote Sens. 46(10), 3031–3038 (2008)

    Article  ADS  Google Scholar 

  11. R. Persico, F. Soldovieri, E. Utsi, Microwave tomography for processing of GPR data at Ballachulish. J. Geophys. Eng. 7, 164–173 (2010)

    Article  Google Scholar 

  12. J. Hugenschmidt, A. Kalogeropoulos, F. Soldovieri, G. Prisco, Processing strategies for high-resolution GPR concrete inspections. NDTE Int. 43, 334–342 (2010)

    Article  Google Scholar 

  13. M. Bavusi, F. Soldovieri, R. Di Napoli, A. Loperte, A. Di Cesare, F.C. Ponzo, V. Lapenna, Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge (Potenza, Italy). J. Geophys. Eng. 8, S33–S46 (2011)

    Article  Google Scholar 

  14. I. Catapano, L. Crocco, R. Di Napoli, F. Soldovieri, A. Brancaccio, F. Pesando, A. Aiello, Microwave tomography enhanced GPR surveys in Centaur’s Domus, Regio VI of Pompeii, Italy. J. Geophys. Eng. 9, S92–S99 (2012)

    Article  Google Scholar 

  15. P. Meincke, Linear GPR inversion for lossy soil and planar air-soil interface. IEEE Trans. Geosci. Remote Sens. 39(12), 2713–2721 (2001)

    Article  ADS  Google Scholar 

  16. T.J. Cui, W.C. Chew, Diffraction tomographic algorithm for the detection of three-dimensional objects buried in a lossy half-space. IEEE Trans. Antennas Propag. 50(1), 42–49 (2002)

    Article  ADS  Google Scholar 

  17. G. Patroni, Caverna naturale con avanzi preistorici in provincia di Salerno. Monumenti Antichi della Reale Accademia dei Lincei IX, 545–616 (1899)

    Google Scholar 

  18. P. Carucci, “La grotta preistorica di Pertosa (Salerno). Contribuzione alla Paletnologia”, Speleologia ed Idrografia, Stabilimento Tipo-Stereotipo F. Di Gennaro and A. Morano, Napoli, 1907, ristampa anastatica, Litografia Dottrinari, Fratte, 1985

  19. R. Solimene, F. Soldovieri, G. Prisco, R. Pierri, Three-dimensional microwave tomography by a 2-D slice-based reconstruction algorithm. IEEE Geosci. Remote Sens. Lett. 4(4), 556–560 (2007)

    Article  ADS  Google Scholar 

  20. F. Larocca, Le Grotte dell’Angelo a Pertosa. Il sistema sotterraneo e il giacimento archeologico, Edizioni Fondazione MIdA, 2010

Download references

Acknowledgments

This research has been performed in the framework of the “Active and Passive Microwaves for Security and Subsurface imaging (AMISS)” EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Soldovieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catapano, I., Affinito, A., Gennarelli, G. et al. Full three-dimensional imaging via ground penetrating radar: assessment in controlled conditions and on field for archaeological prospecting. Appl. Phys. A 115, 1415–1422 (2014). https://doi.org/10.1007/s00339-013-8053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8053-0

Keywords

Navigation