Skip to main content

Advertisement

Log in

Assemblies from metallic and semiconducting nanocrystals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Optical properties of nanomaterials such as semiconductor and metal quantum dots are important for sensors and photovoltaic applications. We report on optical, microscopic, and AFM investigations on bulk and single nanoobjects such as metal and semiconducting nanoparticles. Firstly, of special interest is the investigation of Ag metal nanoaggregates formed in zeolites. Here, the defined structure of the zeolite serves both as size directing and a stabilizing agent. The size selected Ag aggregates fluoresce in the zeolite cages even after storage under ambient conditions for almost one year. In addition, single Ag particles escape the cages and can be investigated by fluorescence microscopy also with respect to sensor applications. Secondly, with respect to photovoltaic applications, energy transfer among organic dye molecules and semiconductor quantum dots is of great importance. We report on the extension of the optical absorption of ZnSe quantum dots into the UV regime and investigate excitation energy transfer within self-assembled nanoaggregates of surface functionalized QDs and fluorescent styrylpyridine dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3
Fig. 7
Fig. 8
Scheme 4

Similar content being viewed by others

References

  1. J. Shi, Y. Zhu, X. Zhang, W.R.G. Baeyens, A.M. Garcia-Compana, TrAC, Trends Anal. Chem. 23, 351 (2004)

    Article  Google Scholar 

  2. P.C.A. Jeronimo, A.N. Araujo, M. Conceicao, B.S.M. Montenegro, Talanta 72, 13 (2007)

    Article  Google Scholar 

  3. J.R. Lakowicz, Probe design and chemical sensing, in Topics in Fluorescence Spectroscopy, vol. 4, ed. by J.R. Lakowicz (Plenum Press, New York, 1994)

    Google Scholar 

  4. L. Prodi, New J. Chem. 29, 20 (2005)

    Article  Google Scholar 

  5. L. Shang, S. Dong, Biosens. Bioelectron. 24, 1569 (2009)

    Article  Google Scholar 

  6. S. Bonacchi, D. Genovese, R. Juris, M. Montalti, L. Prodi, E. Rampazzo, N. Zaccheroni, Angew. Chem. 123, 2 (2011)

    Article  Google Scholar 

  7. A. Tanimura, A. Nezu, T. Morita, R.J. Turner, Y. Tojyo, J. Biol. Chem. 279, 38095 (2004)

    Article  Google Scholar 

  8. Y. Zhou, J. Zhou, Anal. Chem. 76, 5302 (2004)

    Article  Google Scholar 

  9. P. Demechenko, Anal. Biochem. 343, 122 (2005)

    Google Scholar 

  10. P.J. Alivisatos, Phys. Chem. 100, 13226 (1996)

    Article  Google Scholar 

  11. H. Weller, Angew. Chem. 105, 43 (1993)

    Article  Google Scholar 

  12. M. Niemeyer, Angew. Chem., Int. Ed. Engl. 40, 4128 (2001)

    Article  Google Scholar 

  13. B. Dong, L. Cao, G. Su, W. Liu, Chem. Commun. 46, 7331 (2010)

    Article  Google Scholar 

  14. W.C.W. Chan, S. Nie, Science 281, 2016 (1998)

    Article  ADS  Google Scholar 

  15. A.P. Alivisatos, J. Phys. Chem. 100, 13226 (1996)

    Article  Google Scholar 

  16. H. Weller, Angew. Chem. 105, 43 (1993)

    Article  Google Scholar 

  17. C.M. Niemeyer, Angew. Chem., Int. Ed. Engl. 40, 4128 (2001)

    Article  Google Scholar 

  18. A.P. Alivisatos, Nature 437, 664 (2005)

    Article  ADS  Google Scholar 

  19. D.E. Gómez, I. Pastoriza-Santos, P. Mulvaney, Small 1, 238 (2005)

    Article  Google Scholar 

  20. M.Y. Han, X.H. Gao, J.Z. Su, S. Nie, Nat. Biotechnol. 19, 631 (2001)

    Article  Google Scholar 

  21. A.L. Rogach, D. Nagesha, J.W. Ostrander, M. Giersig, N.A. Kotov, Chem. Mater. 12, 2676 (2000)

    Article  Google Scholar 

  22. Y. Chan, J.P. Zimmer, M. Stroh, J.S. Steckel, R.K. Jain, M.G. Bawendi, Adv. Mater. 16, 2092 (2004)

    Article  Google Scholar 

  23. N. Insin, J.B. Tracy, H. Lee, J.P. Zimmer, R.M. Westervelt, M.G. Bawendi, ACS Nano 2, 197 (2008)

    Article  Google Scholar 

  24. S. Ravindran, S. Chaudhary, B. Colburn, C.S. Ozkan, Nano Lett. 3, 447 (2003)

    Article  ADS  Google Scholar 

  25. B.G. Streetman, S. Banerjee, in Solid State Electronic Devices, vol. 5 (Prentice Hall, New Jersey, 2000), p. 524

    Google Scholar 

  26. O. Madelung, in Semiconductors-Basic Data, vol. 2 (Springer, Berlin, 1996)

    Chapter  Google Scholar 

  27. S.F. Jahn, A. Jakob, T. Blaudeck, P. Schmidt, H. Lang, R.R. Baumann, Thin Solid Films 518, 3218 (2010)

    Article  ADS  Google Scholar 

  28. E.I. Zenkevich, T. Blaudeck, A.M. Shulga, F. Cichos, C. von Borczyskowski, J. Lumin. 122, 784 (2007)

    Article  Google Scholar 

  29. D. Kowerko, S. Krause, N. Amecke, M. Abdel-Mottaleb, J. Schuster, C. von Borczyskowski, Int. J. Mol. Sci. 10, 5239 (2009)

    Article  Google Scholar 

  30. D. Kowerko, J. Schuster, N. Amecke, M. Abdel-Mottaleb, R. Dobrawa, F. Würthner, C. von Borczyskowski, Phys. Chem. Chem. Phys. 12, 4112 (2010)

    Article  Google Scholar 

  31. I.R. Díez, H.A. Ras, in Advanced Fluorescence Reporters in Chemistry and Biology II: Molecular Construction, Polymers and Nanoparticles, Springer Ser. Fluoresc., vol. 9 (2010), p. 307

    Chapter  Google Scholar 

  32. Z. Jiang, W. Yuan, H. Pan, Spectrochim. Acta A 61, 2488 (2005)

    Article  ADS  Google Scholar 

  33. H. Xu, K.S. Suslick, Adv. Mater. 22, 1078 (2010)

    Article  Google Scholar 

  34. B. Adhikari, A. Banerjee, Chem. Mater. 22, 4364 (2010)

    Article  Google Scholar 

  35. L. Maretti, P.S. Billone, Y. Liu, J.C. Scaiano, J. Am. Chem. Soc. 131, 13972 (2009)

    Article  Google Scholar 

  36. Y.C. Lin, L.H. Lin, Electrochem. Commun. 6, 1163 (2004)

    Article  Google Scholar 

  37. M. Steffan, A. Jakob, P. Claus, H. Lang, Catal. Commun. 10, 437 (2009)

    Article  Google Scholar 

  38. L. Jiang, W. Wang, D. Wu, J. Zhan, Q. Wang, Z. Wu, R. Jin, Mater. Chem. Phys. 104, 230 (2007)

    Article  Google Scholar 

  39. D. Wöhrle, G. Schulz-Ekloff, Adv. Mater. 6, 875 (1994)

    Article  Google Scholar 

  40. M. Warnken, K. Lázá, M. Wark, Phys. Chem. Chem. Phys. 3, 1870 (2001)

    Article  Google Scholar 

  41. Z. Hens, D.V. Tallapin, H. Weller, D. Vanmaekelbergh, Nano Lett. 81, 4245 (2002)

    Google Scholar 

  42. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, J. Chem. Phys. 116, 6755 (2002)

    Article  ADS  Google Scholar 

  43. S. Lecoultre, A. Rydlo, J. Buttet, C. Félix, S. Gilb, W. Harbich, J. Chem. Phys. 134, 184504 (2011)

    Article  ADS  Google Scholar 

  44. J.S. Ogden, N.E. Bogdanchikova, J.M. Corker, V.P. Petranovskii, Eur. Phys. J. D 9, 605 (1999)

    Article  ADS  Google Scholar 

  45. S.A. Mitchell, J. Farell, G.A. Kenny-Wallace, G.A. Ozin, J. Am. Chem. Soc. 102, 7702 (1980)

    Article  Google Scholar 

  46. D. Geddes, A. Parfenov, I. Gryczynski, J.R. Lakowicz, J. Phys. Chem. B 107, 9989 (2003)

    Article  Google Scholar 

  47. I. Díez, M. Pusa, S. Kulmala, H. Jiang, A. Walther, A.S. Goldmann, A.H.E. Müller, O. Ikkala, R.H.A. Ras, Angew. Chem., Int. Ed. Engl. 48, 2122 (2009)

    Article  Google Scholar 

  48. C.M. Donega, S.G. Hickey, S.F. Wuister, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B 107, 489 (2003)

    Article  Google Scholar 

  49. U. Banin, Y.W. Cao, C.B. Murray, S. O’Brian, Nature 423, 968 (2003)

    Article  ADS  Google Scholar 

  50. E.P.A.M. Bakkers, Z. Hens, A. Zunger, A. Franceschetti, L.P. Kouwenhoven, L. Gurevich, D. Vanmaekelbergh, Nano Lett. 1, 551 (2001)

    Article  ADS  Google Scholar 

  51. M. Cho, K. Lim, K. Woo, Chem. Commun. 46, 5584 (2010)

    Article  Google Scholar 

  52. M.-Q. Zhu, E. Chang, J. Sun, R.A. Drezek, J. Mater. Chem. 17, 800 (2007)

    Article  Google Scholar 

  53. A. Sukhanova, J. Devy, L. Venteo, H. Kaplan, M. Artemyev, V. Oleinkov, D. Klimov, M. Pluot, J.H.M. Cohen, I. Nabier, Anal. Biochem. 324, 60 (2004)

    Article  Google Scholar 

  54. A. Hagfeldt, M. Graetzel, Acc. Chem. Res. 33, 269 (2000)

    Article  Google Scholar 

  55. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, Y. Kim, Adv. Mater. 22, 3076 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Martin Neumann for AFM measurements and Dr. Frank Rauscher, Bayer Technology Services for providing ZnSe quantum dots. Financial support from the Fonds der Chemischen Industrie and BAYER Technology Services is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian von Borczyskowski.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 10.4 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahle, I., Krause, S., Krasselt, C. et al. Assemblies from metallic and semiconducting nanocrystals. Appl. Phys. A 115, 617–625 (2014). https://doi.org/10.1007/s00339-013-8027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8027-2

Keywords

Navigation