Skip to main content
Log in

Plasmonic waveplate: incident polarization modulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Abstract We demonstrate that the rectangular nanohole arrays perforated in a 100 nm gold film can be used to tune the polarization direction of the transmitted light with maximum rotation angle of about 30 degrees. Theoretical analysis with the three-dimensional finite-difference time-domain simulations indicates that this phenomenon is attributed to the excitation of the surface plasmon wave on the gold film surface and the resonance of localized surface plasmon in the hole. With multiple plasmon resonances, the plasmonic waveplate can realize multi-wavelength polarization modulation. Our results may be useful to understanding the physical mechanism of enhanced plasmon mediated transmission and potential applications in plasmonic optical components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  2. Z. Fang, Q.A. Peng, W.T. Song, F.H. Hao, J. Wang, P. Nordlander, X. Zhu, Plasmonic focusing in symmetry broken nanocorrals. Nano Lett. 11, 893–897 (2011)

    Article  ADS  Google Scholar 

  3. S. Thongrattanasiri, A. Manjavacas, F.J. Garcia de Abajo, Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012)

    Article  ADS  Google Scholar 

  4. W.B. Chen, D.C. Abeysinghe, R.L. Nelson, Q.W. Zhan, Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Lett. 9, 4320–4325 (2009)

    Article  ADS  Google Scholar 

  5. Z. Fang, S. Huang, F. Lin, X. Zhu, Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide. Opt. Express 17, 20327–20332 (2009)

    Article  ADS  Google Scholar 

  6. Z. Fang, C.F. Lin, R.M. Ma, S. Huang, X. Zhu, Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano 4, 75–82 (2010)

    Article  Google Scholar 

  7. Z. Fang, S. Huang, Y. Lu, A. Lian, F. Lin, X. Zhu, Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons. Phys. Rev. B 82, 085403 (2010)

    Article  ADS  Google Scholar 

  8. A.A. Yanik, R. Adato, S. Erramilli, H. Altug, Hybridized nanocavities as single-polarized plasmonic antennas. Opt. Express 17, 20900–20910 (2009)

    Article  ADS  Google Scholar 

  9. Z. Fang, L.R. Fan, C.F. Lin, D. Zhang, A.J. Meixner, X. Zhu, Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett. 11, 1676–1680 (2011)

    Article  ADS  Google Scholar 

  10. V. Giannini, Y. Francescato, H. Amrania, C.C. Phillips, S.A. Maier, Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett. 11, 2835–2840 (2011)

    Article  Google Scholar 

  11. Z. Fang, Z. Liu, Y.M. Wang, P.M. Ajayan, P. Nordlander, N.J. Halas, Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012)

    Article  ADS  Google Scholar 

  12. Z. Fang, Y. Wang, Z. Liu, P.M. Ajayan, F.H.L. Koppens, P. Nordlander, N.J. Halas, Plasmon-induced doping of graphene. ACS Nano 6, 10222–10228 (2012)

    Article  Google Scholar 

  13. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P.M. Ajayan, P. Nordlander, N.J. Halas, F.J. Gracia de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured Graphene. ACS NANO 7, 2388–2395 (2013)

    Article  Google Scholar 

  14. Z. Fang, J.Y. Cai, Z.B. Yan, P. Nordlander, N.J. Halas, X. Zhu, Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett. 11, 4475–4479 (2011)

    Article  ADS  Google Scholar 

  15. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  16. R. Gordon, A.G. Brolo, D. Sinton, K.L. Kavanagh, Resonant optical transmission through hole-arrays in metal films: physics and applications. Laser Photonics Rev. 4, 311–335 (2010)

    Article  Google Scholar 

  17. H.S. Lee, Y.T. Yoon, S.S. Lee, S.H. Kim, K.D. Lee, Color filter based on a subwavelength patterned metal grating. Opt. Express 15, 15457–15463 (2007)

    Article  ADS  Google Scholar 

  18. C. Genet, T.W. Ebbesen, Light in tiny holes. Nature 445, 39–46 (2007)

    Article  ADS  Google Scholar 

  19. R. Gordon, M. Hughes, B. Leathem, K.L. Kavanagh, A.G. Brolo, Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film. Nano Lett. 5, 1243–1246 (2005)

    Article  ADS  Google Scholar 

  20. Y.M. Strelniker, Theory of optical transmission through elliptical nanohole arrays. Phys. Rev. B, Condens. Matter 76, 085409 (2007)

    Article  ADS  Google Scholar 

  21. R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, K.L. Kavanagh, Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 92, 037401 (2004)

    Article  ADS  Google Scholar 

  22. K.L. van der Molen, K.J. Klein Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory. Phys. Rev. B, Condens. Matter 72, 045421 (2005)

    Article  ADS  Google Scholar 

  23. Q.A. Zhao, C. Li, Y.S. Zhou, H.Y. Wang, The mechanism of the polarization dependence of the optical transmission in subwavelength metal hole arrays. J. Phys. Condens. Matter 23, 015005 (2011)

    Article  ADS  Google Scholar 

  24. Z. Fang, X. Zhang, D. Liu, X. Zhu, Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy. Appl. Phys. Lett. 93, 073306 (2008)

    Article  ADS  Google Scholar 

  25. A. Drezet, C. Genet, T.W. Ebbesen, Miniature plasmonic wave plates. Phys. Rev. Lett. 101, 043902 (2008)

    Article  ADS  Google Scholar 

  26. E.H. Khoo, E.P. Li, K.B. Crozier, Plasmonic wave plate based on subwavelength nanoslits. Opt. Lett. 36, 2498–2500 (2011)

    Article  Google Scholar 

  27. Z. Fang, H. Qi, C. Wang, X. Zhu, Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing. Plasmonics 5, 207–212 (2010)

    Article  Google Scholar 

  28. Y. Zeng, Y. Fu, X.S. Chen, W. Lu, H. Agren, Selective excitation of surface-polariton Bloch waves for efficient transmission of light through a subwavelength hole array in a thin metal film. Phys. Rev. B, Condens. Matter 76, 35427 (2007)

    Article  ADS  Google Scholar 

  29. Z. Fang, Y. Lu, L. Fan, C. Lin, X. Zhu, Surface plasmon polariton enhancement in silver nanowire-nanoantenna structure. Plasmonics 5, 57–62 (2010)

    Article  Google Scholar 

  30. A. Mary, S.G. Rodrigo, L. Martin-Moreno, F.J. Garcia-Vidal, Theory of light transmission through an array of rectangular holes. Phys. Rev. B, Condens. Matter 76, 195414 (2007)

    Article  ADS  Google Scholar 

  31. Z. Fang, Y.R. Zhen, L.R. Fan, X. Zhu, P. Nordlander, Tunable wide-angle plasmonic perfect absorber at visible frequencies. Phys. Rev. B 85, 245401 (2012)

    Article  ADS  Google Scholar 

  32. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, T.W. Ebbesen, Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95, 046802 (2005)

    Article  ADS  Google Scholar 

  33. Z. Fang, F. Lin, S. Huang, W. Song, X. Zhu, Focusing surface plasmon polariton trapping of colloidal particles. Appl. Phys. Lett. 94, 063306 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Zheyu Fang, Peking University, for his great discussion and manuscript editing. The work is supported by the National Basic Research Program of China (973 Program) Grant No. 2012CB933004, and the National Science Foundation of China (Grant No. 61176120 and No. 60977015). We acknowledge the National Undergraduate Innovational Experimentation Program, and NFFTBS Grant No. J1030310, J1103205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Li, J., Zhang, X. et al. Plasmonic waveplate: incident polarization modulation. Appl. Phys. A 115, 589–593 (2014). https://doi.org/10.1007/s00339-013-8024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8024-5

Keywords

Navigation