Skip to main content
Log in

Tin oxide nanocrystals embedded in nanopore arrays on stainless steel surface for photocatalytic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The immobilization of SnO2 nanocrystals on solid substrates for practical photocatalytic applications suffers from poor adhesion that will lead to loss of photocatalytic activity and short service life. An efficient hydrothermal synthesis of SnO2 nanocrystals embedded in nanopore arrays on stainless steel surface was presented in this paper. The morphology, chemical composition and microstructure of the embedded tin oxide nanocrystals were investigated by X-ray diffraction, field-emission scanning electron microscope, X-ray photoelectron spectroscopy and UV-visible diffuse reflectance spectroscopy. The photocatalytic activity and stability of SnO2 nanocrystals was evaluated by photodegradation of methylene blue. SnO2 nanocrystals embedded in nanopore arrays on stainless steel surface existed in a tetragonal rutile structure. The increasing of the hydrothermal temperature will lead to the improvement in photocatalytic activity of SnO2 nanocrystals. The SnO2 nanocrystals prepared at 220 °C performed the highest photocatalytic activity and good photocatalytic stability, indicating the effective immobilization of SnO2 nanocrystals on anodized stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Tan, L. Wang, Y. Wang, J. Nanomater. 1, 2011 (2011)

    Google Scholar 

  2. Y. Wang, M. Guo, M. Zhang, X. Wang, Scr. Mater. 234, 61 (2009)

    Google Scholar 

  3. S. Dai, Z. Yao, Appl. Surf. Sci. 5703, 258 (2012)

    Google Scholar 

  4. X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang, Y. Jiang, Z. Xie, L. Zheng, Angew. Chem., Int. Ed. Engl. 9180, 48 (2009)

    Google Scholar 

  5. G. Wang, W. Lu, J. Li, J. Choi, Y. Jeong, S.-Y. Choi, J.-B. Park, M.K. Ryu, K. Lee, Small 1436, 2 (2006)

    Google Scholar 

  6. K. Vinodgopal, P. Kamat, Environ. Sci. Technol. 841, 29 (1995)

    Google Scholar 

  7. A.K. Sinha, M. Pradhan, S. Sarkar, T. Pal, Environ. Sci. Technol. 2339, 47 (2013)

    Google Scholar 

  8. D. Chu, J. Mo, Q. Peng, Y. Zhang, Y. Wei, Z. Zhuang, Y. Li, ChemCatChem 371, 3 (2011)

    Google Scholar 

  9. J.C. Yu, W.K. Ho, J. Lin, K.Y. Yip, P.K. Wong, Environ. Sci. Technol. 2296, 37 (2003)

    Google Scholar 

  10. M. Uzunova, M. Kostadinov, J. Georgieva, C. Dushkin, D. Todorovsky, N. Philippidis, I. Poulios, S. Sotiropoulos, Appl. Catal. B, Environ. 23, 73 (2007)

    Google Scholar 

  11. J.G. Zhang, Y.P. Wei, G.J. Jin, G. Wei, Mater. Sci. Technol. 187, 26 (2010)

    Google Scholar 

  12. H. Wang, J.A. Turner, X. Li, R. Bhattacharya, J. Power Sources 567, 171 (2007)

    Google Scholar 

  13. J. Ouyang, M. Chang, Y. Zhang, X. Li, Thin Solid Films 2994, 520 (2012)

    Google Scholar 

  14. G.H. Zhao, Y.Z. Lei, Y.G. Zhang, H.X. Li, M.C. Liu, J. Phys. Chem. C 14786, 112 (2008)

    Google Scholar 

  15. F. Martin, D. Del Frari, J. Cousty, C. Bataillon, Electrochim. Acta 3086, 54 (2009)

    Google Scholar 

  16. W. Zhan, H. Ni, R. Chen, X. Song, K. Huo, J. Fu, J. Mater. Res. 2417, 27 (2012)

    Google Scholar 

  17. S. Han, B. Jang, T. Kim, S.M. Oh, T. Hyeon, Adv. Funct. Mater. 1845, 15 (2005)

    Google Scholar 

  18. E.R. Leite, I.T. Weber, E. Longo, J.A. Varela, Adv. Mater. 965, 12 (2000)

    Google Scholar 

  19. G.S. Pang, S.G. Chen, Y. Koltypin, A. Zaban, S. Feng, A. Gedanken, Nano Lett. 723, 1 (2001)

    Google Scholar 

  20. Y. Liu, J. Dong, M. Liu, Adv. Mater. 353, 16 (2004)

    MathSciNet  Google Scholar 

  21. Y. Liu, M. Liu, Adv. Funct. Mater. 57, 15 (2005)

    Google Scholar 

  22. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, C. Zhou, Adv. Mater. 1754, 15 (2003)

    Google Scholar 

  23. P. Wang, J. Wu, Y. Ao, C. Wang, J. Hou, J. Qian, Mater. Lett. 3278, 65 (2011)

    Google Scholar 

  24. Y. Masuda, K. Kato, Polym. Adv. Technol. 211, 21 (2010)

    Google Scholar 

  25. M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu, Y. Wang, ACS Nano 681, 4 (2010)

    Google Scholar 

  26. L. Renard, O. Babot, H. Saadaoui, H. Fuess, J. Brotz, A. Gurlo, E. Arveux, A. Klein, T. Toupance, Nanoscale 6806, 4 (2012)

    Google Scholar 

  27. Z. Tebby, T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, C. Labrugere, L. Hirsch, ACS Appl. Mater. Interfaces 1485, 3 (2011)

    Google Scholar 

  28. J. Shang, W. Yao, Y. Zhu, N. Wu, Appl. Catal. A, Gen. 25, 257 (2004)

    Google Scholar 

  29. M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Muller, H.J. Kleebe, J. Ziegler, W. Jaegermann, Inorg. Chem. 7764, 51 (2012)

    Google Scholar 

  30. X. Liu, L. Pan, T. Chen, J. Li, K. Yu, Z. Sun, C. Sun, Catal. Sci. Technol. 1805, 3 (2013)

    Google Scholar 

  31. Z. Zhang, M.F. Hossain, T. Takahashi, Appl. Catal. B, Environ. 423, 95 (2010)

    Google Scholar 

  32. X. Wang, H. Fan, P. Ren, Colloids Surf. A, Physicochem. Eng. Asp. 53, 402 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 50771075, 51171133) and the Program for New Century Excellent Talents in University (No. NCET-07-0650).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, W., Ni, H., Chen, R. et al. Tin oxide nanocrystals embedded in nanopore arrays on stainless steel surface for photocatalytic applications. Appl. Phys. A 115, 1381–1386 (2014). https://doi.org/10.1007/s00339-013-8016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8016-5

Keywords

Navigation