Skip to main content
Log in

Improved quantitative analysis of Cu(In,Ga)Se2 thin films using MCs+-SIMS depth profiling

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The chalcopyrite semiconductor, Cu(InGa)Se2 (CIGS), is popular as an absorber material for incorporation in high-efficiency photovoltaic devices because it has an appropriate band gap and a high absorption coefficient. To improve the efficiency of solar cells, many research groups have studied the quantitative characterization of the CIGS absorber layers. In this study, a compositional analysis of a CIGS thin film was performed by depth profiling in secondary ion mass spectrometry (SIMS) with MCs+ (where M denotes an element from the CIGS sample) cluster ion detection, and the relative sensitivity factor of the cluster ion was calculated. The emission of MCs+ ions from CIGS absorber elements, such as Cu, In, Ga, and Se, under Cs+ ion bombardment was investigated using time-of-flight SIMS (TOF-SIMS) and magnetic sector SIMS. The detection of MCs+ ions suppressed the matrix effects of varying concentrations of constituent elements of the CIGS thin films. The atomic concentrations of the CIGS absorber layers from the MCs+-SIMS exhibited more accurate quantification compared to those of elemental SIMS and agreed with those of inductively coupled plasma atomic emission spectrometry. Both TOF-SIMS and magnetic sector SIMS depth profiles showed a similar MCs+ distribution for the CIGS thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.J. Stanbery, Crit. Rev. Solid State Mater. Sci. 27, 73 (2002)

    Article  ADS  Google Scholar 

  2. M. Kemell, M. Ritala, M. Leskela, Crit. Rev. Solid State Mater. Sci. 30, 1 (2005)

    ADS  Google Scholar 

  3. M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, Prog. Photovolt.: Res. Appl. 7, 311 (1999)

    Article  Google Scholar 

  4. U.P. Singh, S.P. Patra, Int. J. Photoenergy 2010, 468147 (2010)

    Article  Google Scholar 

  5. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovolt.: Res. Appl. 19, 894 (2011)

    Article  Google Scholar 

  6. V. Alberts, M. Klenk, E. Bucher, Thin Solid Films 387, 44 (2001)

    Article  ADS  Google Scholar 

  7. M. Klenk, O. Schenker, V. Alberts, E. Bucher, Appl. Surf. Sci. 173, 62 (2001)

    Article  ADS  Google Scholar 

  8. P. Jackson, R. Wurz, U. Rau, J. Mattheis, M. Kurth, T. Schlotzer, G. Bilger, J.H. Werner, Prog. Photovolt.: Res. Appl. 15, 507 (2007)

    Article  Google Scholar 

  9. R. Fernández-Martinez, R. Caballero, C. Guillén, M.T. Gutiérrez, M.I. Rucandio, Anal. Bioanal. Chem. 382, 466 (2005)

    Article  Google Scholar 

  10. V. Hoffmann, R. Dorka, I. Wilken, V.D. Hodoroaba, K. Wetzig, Surf. Interface Anal. 35, 575 (2003)

    Article  Google Scholar 

  11. D. Spemann, M. Lorenz, T. Butz, K. Otte, Anal. Bioanal. Chem. 379, 622 (2004)

    Google Scholar 

  12. N. Benslim, P. Cowache, E.B. Hannech, M. Benabdeslem, L. Bechiri, L. Mahdjoubi, Semicond. Sci. Technol. 17, 1205 (2002)

    Article  ADS  Google Scholar 

  13. C. Perkins, B. Egaas, I. Repins, B. To, Appl. Surf. Sci. 257, 878 (2010)

    Article  ADS  Google Scholar 

  14. D. Niles, K. Ramanathan, F. Hasoon, R. Noufi, B. Tielsch, J. Fulghum, J. Vac. Sci. Technol. A 15, 3044 (1997)

    Article  ADS  Google Scholar 

  15. S. Hofmann, Surf. Interface Anal. 21, 673 (1994)

    Article  Google Scholar 

  16. S.B. Herner, B.P. Gila, K.S. Jones, H.J. Gossmann, J.M. Poate, H.S. Luftman, J. Vac. Sci. Technol. B 14, 3593 (1996)

    Article  Google Scholar 

  17. J. Jang, H. Hwang, H. Kang, J. Suh, H. Min, M. Han, K. Cho, Y. Chung, D. Cho, J. Kim, K. Kim, Metrologia 49, 522 (2012)

    Article  ADS  Google Scholar 

  18. H. Gnaser, H. Oechsner, Surf. Sci. Lett. 302, L289 (1994)

    Article  ADS  Google Scholar 

  19. Y. Gao, J. Appl. Phys. 64, 3760 (1988)

    Article  ADS  Google Scholar 

  20. K. Wittmaack, Surf. Sci. 606, L18 (2012)

    Article  ADS  Google Scholar 

  21. C.W. Magee, W.I. Harrington, E.M. Botnick, Int. J. Mass Spectrom. Ion Process. 103, 45 (1990)

    Article  ADS  Google Scholar 

  22. B. Saha, P. Chakraborty, H. Gnaser, M. Sharma, M.K. Sanyal, Appl. Phys. A 108, 671 (2012)

    Article  ADS  Google Scholar 

  23. K. Kaufmann, S. Wahl, S. Meyer, C. Hagendorf, Surf. Interface Anal. 45, 434 (2013)

    Article  Google Scholar 

  24. R.G. Wilson, F.A. Stevie, C.W. Magee, Secondary Ion Mass Spectrometry (Wiley, New York, 1989)

    Google Scholar 

  25. D. Schmid, M. Ruckh, H.W. Schock, Appl. Surf. Sci. 103, 409 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Science & Technology (KIST) Institutional Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeonhee Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Kim, S.H., Lee, KB. et al. Improved quantitative analysis of Cu(In,Ga)Se2 thin films using MCs+-SIMS depth profiling. Appl. Phys. A 115, 1355–1364 (2014). https://doi.org/10.1007/s00339-013-8009-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8009-4

Keywords

Navigation