Skip to main content
Log in

Characterization of nanostructured CuO–porous silicon matrix formed on copper-coated silicon substrate via electrochemical etching

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO–PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO–PS matrix exhibits an additional weak ‘blue’ PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO–PS matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    Article  ADS  Google Scholar 

  2. P. McCord, S.L. Yau, A.J. Bard, Science 257, 68 (1992)

    Article  ADS  Google Scholar 

  3. L. Brus, J. Phys. Chem. 98, 3575 (1994)

    Article  Google Scholar 

  4. K.D. Hirschman, L. Tsybeskov, S.P. Duttagupta, F.M. Fauchet, Nature 384, 338 (1996)

    Article  ADS  Google Scholar 

  5. V.S.-Y. Lin, K. Motesharei, K.-P.S. Dancil, M.J. Sailor, M.R. Ghadiri, Science 278, 840 (1997)

    Article  ADS  Google Scholar 

  6. M.J. Sailor, E.J. Lee, Adv. Mater. 9, 783 (1997)

    Article  Google Scholar 

  7. J. Wei, J.M. Buriak, G. Siuzdak, Nature 399, 243 (1999)

    Article  ADS  Google Scholar 

  8. P. Steiner, F. Kozlowski, W. Lang, Thin Solid Films 255, 49 (1995)

    Article  ADS  Google Scholar 

  9. K.Y. Suh, Y.S. Kim, S.Y. Park, H.H. Lee, J. Electrochem. Soc. 148, C439 (2001)

    Article  Google Scholar 

  10. H.-C. Hsu, C.-S. Cheng, C.-C. Chang, S. Yang, C.-S. Chang, W.-F. Hsieh, Nanotechnology 16, 297 (2005)

    Article  ADS  Google Scholar 

  11. R.G. Singh, F. Singh, D. Kanjilal, V. Agarwal, R.M. Mehra, J. Phys. D: Appl. Phys. 42, 062002 (2009)

    Article  ADS  Google Scholar 

  12. P. Granitzer, K. Rump, P. Polt, S. Simic, H. Krenn, Superlattices Microstruct. 44, 436 (2008)

    Article  ADS  Google Scholar 

  13. E.B. Chubenko, A.A. Klyshko, V.A. Petrovich, V.P. Bondarenko, Thin Solid Films 517, 5981 (2009)

    Article  ADS  Google Scholar 

  14. S. Ozdemir, J.L. Gole Sens, Actuators B 151, 274 (2010)

    Article  Google Scholar 

  15. S. Ma, M. Hu, P. Zeng, W. Yan, M. Li, Mater. Lett. 99, 57 (2013)

    Article  Google Scholar 

  16. A.E. Rakshani, Solid-State Electron. 29, 7 (1986)

    Article  ADS  Google Scholar 

  17. T. Maruyama, Sol. Energy Mater. Sol. Cells 56, 85 (1998)

    Article  Google Scholar 

  18. R.V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 12(2), 301 (2000)

    Google Scholar 

  19. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)

    Article  ADS  Google Scholar 

  20. C.T. Hsieh, J.M. Chen, Appl. Phys. Lett. 82, 3316 (2003)

    Article  ADS  Google Scholar 

  21. J.B. Reitz, E.I. Solomon, J. Am. Chem. Soc. 120, 11467 (1998)

    Article  Google Scholar 

  22. K.-H. Muller, in High-Tc Superconductors and Related Materials, vol. 86 (Kluwer Academic, Dordrecht, 2001)

    Google Scholar 

  23. Z.S. Hong, Y. Gao, J.F. Deng, Mater. Lett. 52, 34 (2002)

    Article  Google Scholar 

  24. K.H. Yoon, W.J. Choi, D.H. Kang, Thin Solid Films 372, 250 (2000)

    Article  ADS  Google Scholar 

  25. M. Belew, T.-T. Yip, L. Andersson, J. Porath, J. Chromatogr. 403, 197 (1987)

    Article  Google Scholar 

  26. M. Naddaf, F. Awad, M. Soukeih, Mater. Sci. Eng. C 27, 832 (2007)

    Article  Google Scholar 

  27. X.-Y. Hou, H.-L. Fan, L. Xu, F.-L. Zhang, M.-Q. Li, M.-R. Yu, X. Wang, Appl. Phys. Lett. 68, 2323 (1996)

    Article  ADS  Google Scholar 

  28. D.A. Shirley, Phys. Rev. B 5, 4709 (1972)

    Article  ADS  Google Scholar 

  29. Y.-K. Su, C.-M. Shen, H.-T. Yang, H.-L. Li, H.-J. Gao, Trans. Nonferr. Met. Soc. China 17, 783 (2007)

    Article  Google Scholar 

  30. R. Tubino, L. Piseri, G. Zerbi, J. Chem. Phys. 56, 1022 (1972)

    Article  ADS  Google Scholar 

  31. Md.N. Islam, S. Kumar, Appl. Phys. Lett. 78, 715 (2001)

    Article  ADS  Google Scholar 

  32. D.E. Milovzorov, Nonlinear optoelectronic devices based on nanocrystalline silicon films: acoustoelectrical switches for optical modes, nonlinear optical switches and lasers, in Nanocrystal, ed. by Y. Masuda (InTech publications, published online 2011), available from: http://www.intechopen.com/books/nanocrystal/nonlinear-optoelectronic-devices-based-on-nanocrystallinesilicon-films-acoustoelectrical-switches-f

  33. S.M. Prokes, W.E. Carlos, L. Seals, J.L. Gole, Phys. Rev. B 62, 1878 (2000)

    Article  ADS  Google Scholar 

  34. S. Hernández, A. Martínez, P. Pellegrino, Y. Lebour, B. Garrido, E. Jordana, J.M. Fedeli, J. Appl. Phys. 104, 044304 (2008)

    Article  ADS  Google Scholar 

  35. M.E. Kompan, I.I. Novak, V.B. Kulik, M.A. Komakova, Phys. Solid State 41, 1207 (1999)

    Article  ADS  Google Scholar 

  36. R. Biswas, A.M. Bouchard, W.A. Kamitakahara, Phys. Rev. Lett. 60, 2280 (1988)

    Article  ADS  Google Scholar 

  37. X.K. Chen, J.C. Irwin, J.P. Franck, Phys. Rev. B 52, R13130 (1995)

    Article  ADS  Google Scholar 

  38. W. Wang, Z. Liu, Y. Liu, C. Xu, C. Zheng, G. Wang, Appl. Phys. A 76, 417 (2003)

    Article  ADS  Google Scholar 

  39. T. Yu, X. Zhao, Z.X. Shen, Y.H. Wu, W.H. Su, J. Cryst. Growth 268, 590 (2004)

    Article  ADS  Google Scholar 

  40. N.D. Hoa, N.V. Quy, H. Jung, D. Kim, H. Kim, S.-K. Hong, Sens. Actuators B 146, 266 (2010)

    Article  Google Scholar 

  41. K. Reimann, K. Syassen, Phys. Rev. B 39, 11113 (1989)

    Article  ADS  Google Scholar 

  42. Z. Zhang, P. Wang, J. Mater. Chem. 22, 2456 (2012)

    Article  Google Scholar 

  43. Y.F. Mei, G.G. Siu, Y. Yang, R.K.Y. Fu, T.F. Hung, P.K. Chu, X.L. Wu, Acta Mater. 52, 5051 (2004)

    Article  Google Scholar 

  44. J. Ghijsen, L.H. Tjeng, J. Van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38, 11322 (1988)

    Article  ADS  Google Scholar 

  45. Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Appl. Phys. Lett. 70, 3038 (1997)

    Article  Google Scholar 

  46. B. Wallbank, C.E. Johnson, I.G. Main, J. Electron Spectrosc. Relat. Phenom. 4, 263 (1974)

    Article  Google Scholar 

  47. J.C. Klein, C.P. Li, D.M. Hercules, J.F. Black, Appl. Spectrosc. 38, 729 (1984)

    Article  ADS  Google Scholar 

  48. T.P. Tobin, W. Hirschwald, J. Cunningham, Appl. Surf. Sci. 16, 441 (1983)

    Article  ADS  Google Scholar 

  49. Y. Iijima, N. Niimura, K. Hiraoka, Surf. Interface Anal. 24, 193 (1996)

    Article  Google Scholar 

  50. C.C. Chusuei, M.A. Brookshier, D.W. Goodman, Langmuir 15, 2806 (1999)

    Article  Google Scholar 

  51. C.D. Wagner, W.M. Riggs, W.E. Davis, J.F. Moulder, G.E. Muilenberg (eds.), Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy (Physical Electronics Division, Perkin-Elmer Corporation, Eden Prairie, 1979)

    Google Scholar 

  52. F. Dinelli, J.F. Moulin, M.A. Loi, E. Da Como, M. Massi, M. Murgia, M. Muccini, F. Biscarini, J. Wie, P. Kinghott, J. Phys. Chem. B 110, 258 (2006)

    Article  Google Scholar 

  53. F. Leisenberger, R. Duschek, R. Czaputa, F.P. Netzer, G. Beamson, J.A.D. Matthew, Appl. Surf. Sci. 108, 273 (1997)

    Article  ADS  Google Scholar 

  54. K.Y. Suh, Y.S. Kim, H.H. Lee, J. Appl. Phys. 91, 10206 (2002)

    Article  ADS  Google Scholar 

  55. J. Sasano, R. Murota, Y. Yamauchi, T. Sakka, Y.H. Ogata, J. Electroanal. Chem. 559, 125 (2003)

    Article  Google Scholar 

  56. P.M. Fauchet, J. Lumin. 80, 53 (1999)

    Article  Google Scholar 

  57. M. Naddaf, H. Hamadeh, Mater. Sci. Eng. C 29, 2092 (2009)

    Article  Google Scholar 

  58. G.G. Qin, Y.Q. Jia, Solid State Commun. 86, 559 (1993)

    Article  ADS  Google Scholar 

  59. H.-H. Lin, C.-Y. Wang, H.C. Shih, J.-M. Chen, C.-T. Hsieh, J. Appl. Phys. 95, 5889 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Director General of AECS, Prof. I. Othman, for encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naddaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naddaf, M., Mrad, O. & Al-zier, A. Characterization of nanostructured CuO–porous silicon matrix formed on copper-coated silicon substrate via electrochemical etching. Appl. Phys. A 115, 1345–1353 (2014). https://doi.org/10.1007/s00339-013-8008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8008-5

Keywords

Navigation