Skip to main content
Log in

Optical properties of Cu nanocomposite glass obtained via CuO and SnO co-doping

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Prospective applications of plasmonic nanocomposites in photonic and optoelectronic devices demand innovative means of material syntheses, as well as a comprehensive understanding of the influence of material composition and processing on resulting properties. In this work, it is shown that a phosphate glass matrix prepared with stoichiometric amounts of CuO and SnO dopants by the melting technique may well be effective for the precipitation of Cu nanoparticles (NPs) upon heat treatment (HT). Optical absorption and photoluminescence (PL) spectroscopy, including emission decay dynamics, are employed in the characterization of the melt-quenched glass, and for investigating the influence of HT on material optical properties. The as-prepared material appeared highly luminescent; the data suggests contributions from both twofold-coordinated tin centers and Cu+ ions to light emission. The PL depends strongly on excitation wavelength; e.g. excitation at 260 nm shows a blue–white emission for which a significant contribution from tin is indicated, whereas excitation at 360 nm produces an orange emission in association with Cu+ ions. Thermal processing results in the chemical reduction of ionic copper via Sn2+ ultimately producing Cu NPs in the matrix, as evidenced by the appearance of the surface plasmon resonance around 574 nm. As a result, Cu+ PL decreases and the emission band shows a dip due to reabsorption by Cu NPs in resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Yamane, Y. Asahara, Glasses for Photonics (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  2. A.L. Stepanov, Rev. Adv. Mater. Sci. 27, 115 (2011)

    Google Scholar 

  3. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G.v. Plessen, F. Lederer, Phys. Status Solidi A 205, 2844 (2008)

    Article  ADS  Google Scholar 

  4. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)

    Article  ADS  Google Scholar 

  5. S. Gómez, I. Urra, R. Valiente, F. Rodríguez, Sol. Energy Mater. Sol. Cells 95, 2018 (2011)

    Article  Google Scholar 

  6. A. Yasumori, F. Tada, S. Yanagida, T. Kishi, J. Electrochem. Soc. 159, J143 (2012)

    Article  Google Scholar 

  7. A.S. Kuznetsov, V.K. Tikhomirov, V.V. Moshchalkov, Mater. Lett. 92, 4 (2013)

    Article  Google Scholar 

  8. M. Sendova-Vassileva, M. Sendova, A. Troutt, Appl. Phys. A 81, 871 (2005)

    Article  ADS  Google Scholar 

  9. J.A. Jiménez, S. Lysenko, G. Zhang, H. Liu, J. Electron. Mater. 36, 812 (2007)

    Article  ADS  Google Scholar 

  10. O. Veron, J.P. Blondeau, N. Abdelkrim, E. Ntsoenzok, Plasmonics 5, 213 (2010)

    Article  Google Scholar 

  11. Y. Ma, J. Lin, S. Qin, L. Zhu, B. Li, S. Lei, J. Electron. Mater. 41, 646 (2012)

    Article  ADS  Google Scholar 

  12. M. Sendova, J.A. Jiménez, J. Phys. Chem. C 116, 17764 (2012)

    Article  Google Scholar 

  13. J.A. Jiménez, S. Lysenko, V.S. Vikhnin, H. Liu, J. Electron. Mater. 39, 138 (2010)

    Article  ADS  Google Scholar 

  14. A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, K. Rademann, J. Am. Chem. Soc. 134, 18824 (2012)

    Article  Google Scholar 

  15. J.A. Jiménez, M. Sendova, H. Liu, F.E. Fernández, Plasmonics 6, 399 (2011)

    Article  Google Scholar 

  16. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A.J. Ikushima, T. Tokisaki, A. Nakamura, J. Opt. Soc. Am. B 11, 1236 (1994)

    Article  ADS  Google Scholar 

  17. T. Murata, K. Morinaga, Proc. SPIE 4102, 316 (2000)

    Article  ADS  Google Scholar 

  18. P. Boutinaud, C. Parent, G. Le Flem, C. Pedrini, B. Moine, J. Phys. Condens. Matter 4, 3031 (1992)

    Article  ADS  Google Scholar 

  19. C. Parent, P. Boutinaud, G. Le Flem, B. Moine, C. Pedrini, D. Garcia, M. Faucher, Opt. Mater. 4, 107 (1994)

    Article  Google Scholar 

  20. T. Hayakawa, T. Enomoto, M. Nogami, Jpn. J. Appl. Phys. 45, 5078 (2006)

    Article  ADS  Google Scholar 

  21. J.A. Jiménez, S. Lysenko, H. Liu, E. Fachini, O. Resto, C.R. Cabrera, J. Lumin. 129, 1546 (2009)

    Article  Google Scholar 

  22. H. Masai, T. Fujiwara, S. Matsumoto, Y. Tokuda, T. Yoko, Emission property of Sn2+-doped ZnO–P2O5 glass. J. Non-Cryst. Solids (in press), corrected proof, available online 14 May 2013

  23. J.J. Shyu, C.C. Chiang, J. Am. Ceram. Soc. 94, 2099 (2011)

    Article  Google Scholar 

  24. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)

    Book  Google Scholar 

  25. K. Tamimura, W.A. Sibley, L.G. DeShazer, Phys. Rev. B 31, 3980 (1985)

    Article  ADS  Google Scholar 

  26. R. Debnath, S.K. Das, Chem. Phys. Lett. 155, 52 (1989)

    Article  ADS  Google Scholar 

  27. E. Borsella, A. Dal Vecchio, M.A. García, C. Sada, F. Gonella, R. Polloni, A. Quaranta, L.J.G.W. van Wilderen, J. Appl. Phys. 91, 90 (2002)

    Article  ADS  Google Scholar 

  28. N. Srinivasa Rao, L. Srinivasa Rao, Y. Gandhi, V. Ravikumar, N. Veeraiah, Physica B 405, 4092 (2010)

    Article  ADS  Google Scholar 

  29. K. Fukumi, A. Chayahara, K. Ohora, N. Kitamura, Y. Horino, K. Fujii, M. Makihara, J. Hayakaya, N. Ohno, Nucl. Instrum. Methods Phys. Res. B 149, 77 (1999)

    Article  ADS  Google Scholar 

  30. Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, D. Chen, Chem. Phys. Lett. 482, 228 (2009)

    Article  ADS  Google Scholar 

  31. H. Guo, R.F. Wei, X.Y. Liu, Opt. Lett. 37, 1670 (2012)

    Article  ADS  Google Scholar 

  32. P. Boutinaud, E. Duloisy, C. Pedrini, B. Moine, C. Parent, G. Le Flem, J. Solid State Chem. 94, 236 (1991)

    Article  ADS  Google Scholar 

  33. H. Liu, F. Gan, J. Non-Cryst. Solids 80, 447 (1986)

    Article  Google Scholar 

  34. W.A. Weyl, Coloured Glasses (Society of Glass Technology, Sheffield, 1951), pp. 347, 406

    Google Scholar 

  35. Y. Ti, F. Qiu, Y. Cao, L. Jia, W. Qin, J. Zheng, G. Farrell, J. Mater. Sci. 43, 7073 (2008)

    Article  ADS  Google Scholar 

  36. F. Fujishiro, R. Sekimoto, T. Hashimoto, J. Lumin. 133, 217 (2013)

    Article  Google Scholar 

  37. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

  38. R. Kibar, A. Çetin, N. Can, Physica B 404, 105 (2009)

    Article  ADS  Google Scholar 

  39. S.E. Paje, J. Llopis, M.A. Villegas, M.A. García, J.M. Fernández Navarro, Appl. Phys. A 67, 429 (1998)

    Article  ADS  Google Scholar 

  40. M.A. García, E. Borsella, S.E. Paje, J. Llopis, M.A. Villegas, R. Polloni, J. Lumin. 193, 253 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the experimental assistance of undergraduate students Hanh Hoang and Gene Buchanan from the Chemistry Department at UNF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, J.A. Optical properties of Cu nanocomposite glass obtained via CuO and SnO co-doping. Appl. Phys. A 114, 1369–1376 (2014). https://doi.org/10.1007/s00339-013-7992-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7992-9

Keywords

Navigation