Skip to main content
Log in

Magnetic and transport properties of electron-doped Ca3−x Bi x Mn2O7

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ca3−x Bi x Mn2O7 with the nominal composition x=0.05, 0.1, 0.2 and 0.3 is synthesized by solid-state reaction. The refined X-ray diffraction pattern of Ca2.807Bi0.193Mn2O7 with the nominal Bi3+ content x=0.2 indicates that about 71 % of the Bi3+ ion enters into the Ca2+ (2a) site and the remaining 29 % is in the Ca2+ (4e) site. The doped Bi3+ ion produces a ferromagnetic component in the antiferromagnetic matrix. Below the transition temperature, at about 110 K, the ferromagnetic and antiferromagnetic interactions coexist. The alignment of the magnetic moment is canted at 5 K. The electric transport shows insulating behavior. Around the magnetic transition, at about 110 K, the resistance sharply drops like a well. A model proposed by Glazman and Matveev (GM model) is applied to the thermal variation of the resistance from 40 K to 138 K. Above this temperature, it is due to thermally activated hopping of small polarons with the activation energy of 50 meV. A negative magnetoresistance, 17 %, is observed with the doping content as low as 0.05. The magnetoresistance is due to the spin-polarized inelastic tunneling through nonmagnetic localized states embedded in an insulating barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.L. Gai, E.M. McCarron III, Science 147, 553 (1990)

    Article  ADS  Google Scholar 

  2. T. Birol, N.A. Benedek, C.J. Fennie, Phys. Rev. Lett. 108, 029901 (2012)

    Article  ADS  Google Scholar 

  3. S.J. Moon, H. Jin, K.W. Kim, W.S. Choi, Y.S. Lee, J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, T.W. Noh, Phys. Rev. Lett. 101, 226402 (2008)

    Article  ADS  Google Scholar 

  4. Q.F. Zhang, W.Y. Zhang, Z.S. Jiang, Phys. Rev. B 72, 142401 (2005)

    Article  ADS  Google Scholar 

  5. W. Zhu, L. Pi, Y. Huang, S. Tan, Y. Zhang, Appl. Phys. Lett. 101, 192407 (2012)

    Article  ADS  Google Scholar 

  6. S.N. Ruddlesden, P. Popper, Acta Crystallogr. 11, 541 (1958)

    Google Scholar 

  7. I.D. Fawcett, J.E. Sunstrom, M. Greenblatt, M. Croft, K.V. Ramanujachary, Chem. Mater. 10, 3643 (1998)

    Article  Google Scholar 

  8. I.D. Fawcett, E. Kim, M. Greenblatt, M. Croft, L.A. Bendersky, Phys. Rev. B 62, 6485 (2000)

    Article  ADS  Google Scholar 

  9. M.V. Lobanov, S.W. Li, M. Greenblatt, Chem. Mater. 15(6), 1302 (2003)

    Article  Google Scholar 

  10. W.H. Jung, J. Mater. Sci. Lett. 19, 2037 (2000)

    Article  Google Scholar 

  11. A.L. Cornelius, B.E. Light, Phys. Rev. B 68, 014403 (2003)

    Article  ADS  Google Scholar 

  12. H. Ohnishi, T. Kosugi, T. Miyake, S. Ishibashi, K. Terakura, Phys. Rev. B 85, 165128 (2012)

    Article  ADS  Google Scholar 

  13. L.I. Glazman, K.A. Matveev, Sov. Phys. JETP 67, 1276 (1988)

    Google Scholar 

  14. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon, Oxford, 1979), p. 37

    Google Scholar 

  15. Y. Lu, M. Tran, H. Jaffres, P. Seneor, C. Deranlot, F. Petroff, J.-M. George, Phys. Rev. Lett. 102, 176801 (2009)

    Article  ADS  Google Scholar 

  16. Z.W. Fan, P. Li, E.Y. Jiang, H.L. Bai, J. Phys. D: Appl. Phys. 46, 065002 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science foundation of China (Grant no. 11264024), the Inner Mongolia Natural Science Foundation (Grant no. 2011BS0101), and the Micro-nano magnetic material research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, H., Wu, Q. Magnetic and transport properties of electron-doped Ca3−x Bi x Mn2O7 . Appl. Phys. A 115, 1323–1327 (2014). https://doi.org/10.1007/s00339-013-7991-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7991-x

Keywords

Navigation