Skip to main content

Advertisement

Log in

Electric field effect on the electronic properties of double-walled carbon-doped boron-nitride nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon (C) doped zigzag (8, 0)@(16, 0) and armchair (5, 5)@(10, 10) double-walled boron-nitride nanotubes (DWBNNTs), under the influence of external electric fields applied in different directions are studied through first-principles calculations. We have considered the substitution of a B and a N (one species at each wall—inner or outer) by C atoms, generating a type-n inside a type-p semiconductor ((type-n)@(type-p)) and vice-versa. The resulting doped DWBNNT can be thought as a p–n junction. The obtained formation energies and structural properties results indicate that these structures present good stability and are not affected by the electric field application. For the electronic structure, it was observed that external fields can be used to modulate these systems energy gaps. Also, there is a preferred field direction which minimizes the gap values, and the gap increase or decrease is related to the reverse and direct polarization of the p–n junction, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Tooley, Circuitos Eletronicos Fundamentos e Aplicacoes (Elsevier, Amsterdam, 2008). ISBN 8535223649

    Google Scholar 

  2. A.S. Sedra, K.C. Smith, Microeletronica (Pearson, Upper Saddle River, 2007). ISBN 9788576050223

    Google Scholar 

  3. H. Dai, Surf. Sci. 500, 218 (2002)

    Article  ADS  Google Scholar 

  4. C. Shen, A.H. Brozena, Y. Wang, Nanoscale 3, 503 (2010)

    Article  ADS  Google Scholar 

  5. S. Tans, M. Verschueren, C. Dekker, Nature 393, 49 (1998)

    Article  ADS  Google Scholar 

  6. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998)

    Article  ADS  Google Scholar 

  7. J.U. Lee, P.P. Gipp, C.M. Heller, Appl. Phys. Lett. 85, 145 (2004)

    Article  ADS  Google Scholar 

  8. P. Ayala, A. Rubio, T. Pichler, Rev. Mod. Phys. 82, 1843 (2010)

    Article  ADS  Google Scholar 

  9. Y. Yap, B–C–N Nanotubes and Related Nanostructures (Springer, New York, 2009)

    Google Scholar 

  10. G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966 (1995)

    Article  ADS  Google Scholar 

  11. A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Phys. Rev. Lett. 76, 4737 (1996)

    Article  ADS  Google Scholar 

  12. D. Golberg, W. Han, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato, J. Appl. Phys. 86, 2364 (1999)

    Article  ADS  Google Scholar 

  13. D. Golberg, Y. Bando, K. Kurashima, T. Sato, Chem. Phys. Lett. 323, 185 (2000)

    Article  ADS  Google Scholar 

  14. D. Golberg, Y. Bando, K. Kurashima, T. Sato, Solid State Commun. 116, 1 (2000)

    Article  ADS  Google Scholar 

  15. D. Golberg, Y. Bando, K. Kurashima, T. Sato, Phys. Lett. 323, 185 (2000)

    Google Scholar 

  16. R. Arenal, X. Blase, A. Loiseau, Adv. Phys. 59, 101 (2010)

    Article  ADS  Google Scholar 

  17. D. Golberg, Y. Bando, C. Tang, C. Zni, Adv. Mater. 19, 2413 (2007)

    Article  Google Scholar 

  18. D. Golberg, M. Mitome, Y. Bando, C.C. Tang, C.Y. Zhi, Appl. Phys. A, Mater. Sci. Process. 88, 347 (2007)

    Article  ADS  Google Scholar 

  19. G. Chopra, A. Zettl, Solid State Commun. 105, 297 (1998)

    Article  ADS  Google Scholar 

  20. N. Hamada, S.I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  ADS  Google Scholar 

  21. E. Bengu, L.D. Marks, Phys. Rev. Lett. 86, 2385 (2001)

    Article  ADS  Google Scholar 

  22. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  23. W. Kohn, L.J. Sham, Phys. Rev. 114, A1133 (1965)

    Article  MathSciNet  Google Scholar 

  24. S. Okada, S. Saito, A. Oshiyama, Phys. Rev. B 65, 165410 (2002)

    Article  ADS  Google Scholar 

  25. S.-H. Jhi, D.J. Roundy, S.G. Louie, M.L. Cohen, Solid State Commun. 134, 397 (2005)

    Article  ADS  Google Scholar 

  26. G.G. Fuentes, E. Borowiak-Palen, T. Pichler, X. Liu, A. Graff, G. Behr, R.J. Kalenczuk, M. Knupfer, J. Fink, Phys. Rev. B 67, 035429 (2003)

    Article  ADS  Google Scholar 

  27. D.R. Gonçalves, S. Azevedo, F. Moraes, M. Machado, Eur. Phys. J. B 73, 211 (2010)

    Article  ADS  Google Scholar 

  28. D.R. Gonçalves, S. Azevedo, F. Moraes, M. Machado, Int. J. Quant. Chem. 110, 1778 (2010)

    Google Scholar 

  29. K.H. Khoo, M.S.C. Mazzoni, S.G. Louie, Phys. Rev. B 69, 201401(R) (2004)

    Article  ADS  Google Scholar 

  30. D. Sanchez-Portal, P. Ordejon, E. Artacho, J.m. Soler, Int. J. Quant. Chem. 65, 453 (1997)

    Article  Google Scholar 

  31. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  32. O.F. Sankey, D.J. Niklewski, Phys. Rev. B 40, 3979 (1989)

    Article  ADS  Google Scholar 

  33. E. Artacho, D. Sanchez-Portal, P. Ordejon, A. Garcia, J.M. Soler, Phys. Status Solidi B 215, 809 (1999) and references therein

    Article  ADS  Google Scholar 

  34. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  35. S. Azevedo, J. Kaschny, M. Caio, F. de Brito Mota, Eur. Phys. J. B 67, 519 (2009)

    Article  Google Scholar 

  36. X. Wei, M.-S. Wang, Y. Bando, D. Golberg, J. Am. Chem. Soc. 132, 39 (2010)

    Google Scholar 

  37. C.-W. Chen, M.-H. Lee, S.J. Clark, Nanotechnology 15, 1837 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian Agencies, CNPq, INCT—Nanomateriais de Carbono, and Capes/Nanobiotec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, A., Azevedo, S., Kaschny, J. et al. Electric field effect on the electronic properties of double-walled carbon-doped boron-nitride nanotubes. Appl. Phys. A 114, 1039–1048 (2014). https://doi.org/10.1007/s00339-013-7985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7985-8

Keywords

Navigation