Skip to main content
Log in

Polycrystalline GaSb films prepared by the coevaporation technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Gallium antimonide (GaSb) films were deposited onto fused silica and n-Si (100) substrates by coevaporating Ga and Sb from appropriate evaporation sources. The films were polycrystalline in nature. The size and the shape of the grains varied with the change in the substrate temperature during deposition. The average surface roughness of the films was estimated to be 10 nm. Grain boundary trap states varied between 2×1012 and 2.2×1012 cm−2 while barrier height at the grain boundaries varied between 0.09 eV and 0.10 eV for films deposited at higher temperatures. Stress in the films decreased for films deposited at higher temperatures. XPS studies indicated two strong peaks located at ∼543 eV and ∼1121 eV for Sb 3d3/2 and Ga 2p3/2 core-level spectra, respectively. The PL spectra measured at 300 K was dominated by a strong peak located ∼0.55 eV followed by two low intensity peaks ∼0.63 eV and 0.67 eV. A typical n-Si/GaSb photovoltaic cell fabricated here indicated V oc∼311 mV and J∼29.45 mA/cm2, the density of donors (N d)∼3.87×1015 cm−3, built in potential (V bi)∼0.48 V and carrier life time (τ)∼28.5 ms. Impedance spectroscopy measurements indicated a dielectric relaxation time ∼100 μs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Nguyen, W. Varhue, M. Cross, R. Pino, E. Adams, M. Lavoie, J. Lee, J. Appl. Phys. 101, 073707 (2007)

    Article  ADS  Google Scholar 

  2. S. Sridaran, A. Chavan, P.S. Dutta, J. Cryst. Growth 310, 1590 (2008)

    Article  ADS  Google Scholar 

  3. Q. Zaixiang, S. Yun, H. Weiyu, H. Qing, L. Changjian, J. Semicond. 30, 033004 (2009)

    Article  ADS  Google Scholar 

  4. Y.K. Noh, M.D. Kim, J.E. Oh, W.C. Yang, J. Korean Phys. Soc. 57, 173 (2010)

    Article  ADS  Google Scholar 

  5. M.W. Shura, V. Wagener, J.R. Botha, M.C. Wagener, Physica B 407, 1656 (2012)

    Article  ADS  Google Scholar 

  6. Z.C. Feng, F.C. Hou, J.B. Webb, Z.X. Shen, E. Rusli, I.T. Ferguson, W. Lu, Thin Solid Films 516, 5493 (2008)

    Article  ADS  Google Scholar 

  7. Y. Dong, D.W. Scott, Y. Wei, A.C. Gossard, M.J. Rodwell, J. Cryst. Growth 256, 223 (2003)

    Article  ADS  Google Scholar 

  8. X. Zhou, W. Guo, A.G. Perez-Bergquist, Q. Wei, Y. Chen, K. Sun, L. Wang, Nanoscale Res. Lett. 6, 6 (2011)

    ADS  Google Scholar 

  9. R. Jian-ming, S. Yan-ping, L. Tao, H. Wei-yu, C. Hong-kun, Z. De-xian, J. Funct. Mater. (2012). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GNCL201204011.htm

  10. C.C. Ling, M.K. Lui, S.K. Ma, X.D. Chen, S. Fung, C.D. Beling, Appl. Phys. Lett. 85, 384 (2004)

    Article  ADS  Google Scholar 

  11. Y.F. Komnik, Sov. Phys. Solid State Transl. 6, 2309 (1965)

    Google Scholar 

  12. L.S. Palatnik, Y.F. Komnik, Sov. Phys. “Dokl.” Engl. Transl. 5, 1960 (1960)

    Google Scholar 

  13. T. Okuzako, K. Okamura, Y. Matsui, K. Nakaya, Y. Kajikawa, Phys. Status Solidi C 8, 266 (2011)

    Article  ADS  Google Scholar 

  14. E.K. Propst, K.W. Vogt, P.A. Kohl, J. Electrochem. Soc. 140, 3631 (1993)

    Article  Google Scholar 

  15. F.M. Liu, L.D. Zhang, Semicond. Sci. Technol. 14, 710 (1999)

    Article  ADS  Google Scholar 

  16. H. Xu, J. Appl. Phys. 68, 4077 (1990)

    Article  ADS  Google Scholar 

  17. J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E 9, 1002 (1976)

    Article  ADS  Google Scholar 

  18. D. Bhattacharya, S. Chaudhuri, A.K. Pal, S.K. Bhattacharya, Vacuum 43, 313 (1992)

    Article  Google Scholar 

  19. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, New York, 1971), p. 89

    Google Scholar 

  20. S.W. Xue, X.T. Zu, W.G. Zheng, H.X. Deng, Z. Xiang, Physica B 381, 209 (2006)

    Article  ADS  Google Scholar 

  21. S.R. Bhattacharyya, R.N. Gayen, R. Paul, A.K. Pal, Thin Solid Films 517, 5530 (2009)

    Article  ADS  Google Scholar 

  22. Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology. New Series Group III, 17a (Springer, Berlin, 1982), p. 281

  23. J.C. Manifacier, M.D. Murcia, J.P. Fillard, E. Vicario, Thin Solid Films 41, 127 (1977)

    Article  ADS  Google Scholar 

  24. D.K. Ferry, Semiconductors (McMillan, New York, 1995), Chap. 5

    Google Scholar 

  25. D. Redfield, Phys. Rev. 130, 916 (1963)

    Article  ADS  Google Scholar 

  26. J.P. Dow, D. Redfield, Phys. Rev. B 1, 3358 (1970)

    Article  ADS  Google Scholar 

  27. M. Bujatti, F. Marcelja, Thin Solid Films 11, 249 (1972)

    Article  ADS  Google Scholar 

  28. A.B. Maity, S. Chaudhuri, A.K. Pal, Phys. Status Solidi B 183, 185 (1994)

    Article  ADS  Google Scholar 

  29. V.I. Gavrilenko, Phys. Status Solidi B 139, 457 (1987)

    Article  ADS  Google Scholar 

  30. J. Szczyrbrowski, Phys. Status Solidi B 96, 769 (1979). 105, 515 (1981)

    Article  ADS  Google Scholar 

  31. J. Tauc, Mater. Res. Bull. 5, 721 (1970)

    Article  Google Scholar 

  32. A.B. Maity, M. Basu, S. Chaudhuri, A.K. Pal, J. Phys. D 28, 2547 (1995)

    Article  ADS  Google Scholar 

  33. A.B. Maity, D. Bhattacharyya, S. Chaudhury, A.K. Pal, Vacuum 46, 319 (1995)

    Article  Google Scholar 

  34. B.R. Gooick, J. Appl. Phys. 26, 1356 (1955)

    Article  ADS  Google Scholar 

  35. W.H. Ko, IEEE Trans. Electron Devices 8, 123 (1961)

    Article  ADS  Google Scholar 

  36. R.J. Bassett, Solid-State Electron. 12, 385 (1969)

    Article  ADS  Google Scholar 

  37. R.G. Mazur, in Semiconductor Silicon, ed. by H.R. Huffand, R.R. Burgess, (1973), p. 537

    Google Scholar 

  38. A.B. Walker, L.M. Peter, K. Lobato, P.J. Cameron, J. Phys. Chem. B 110, 25504 (2006)

    Article  Google Scholar 

  39. A. Zaban, M. Greenshtein, J. Bisquert, ChemPhysChem 4, 859 (2003)

    Article  Google Scholar 

  40. T. Pisarkiewicz, Opto-Electron. Rev. 12, 33 (2004)

    Google Scholar 

  41. V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, W. Schroter, Appl. Phys. Lett. 84, 2106 (2004)

    Article  ADS  Google Scholar 

  42. A. Davletova, S.Zh. Karazhanov, J. Phys. D: Appl. Phys. 41, 165107 (2008)

    Article  ADS  Google Scholar 

  43. J.E. Mahan, T.W.E. Kstedt, R.I. Frank, IEEE Trans. Electron Devices 26, 5 (1979)

    Article  Google Scholar 

  44. H.J. Choi, C.H. Hong, M.S. Jhon, Int. J. Mod. Phys. B 21, 4974–4980 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors also wish to thank the Department of Science and Technology, Government of India, for sanctioning financial assistance under PURSE Scheme of Jadavpur University for executing this program. One of us (DG) wishes to thank the Department of Science and Technology, Government of India, for granting him fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, D., Ghosh, B., Hussain, S. et al. Polycrystalline GaSb films prepared by the coevaporation technique. Appl. Phys. A 115, 1251–1261 (2014). https://doi.org/10.1007/s00339-013-7974-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7974-y

Keywords

Navigation