Skip to main content
Log in

Raman spectrum of Si nanowires: temperature and phonon confinement effects

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Raman spectrum of Si nanowires (NWs) is a matter of controversy. Usually, the one-phonon band appears broadened and shifted. This behaviour is interpreted in terms of phonon confinement; however, similar effects are observed for NWs with dimensions for which phonon confinement does not play any relevant role. In this context, the temperature increase induced by the laser beam is recognized to play a capital role in the shape of the spectrum. The analysis of the Raman spectrum, under the influence of the heating induced by the laser beam, is strongly dependent on the excitation conditions and the properties of the NWs. We present herein an analysis of the Raman spectrum of Si NWs based on a study of the interaction between the laser beam and the NWs, for both ensembles of NWs and individual NWs, taking account of the temperature increase in the NWs under the focused laser beam and the dimensions of the NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Cui, C.M. Lieber, Science 291, 851 (2001)

    Article  ADS  Google Scholar 

  2. H. Scheel, S. Reich, A.C. Ferrari, M. Cantoro, A. Colli, C. Thomsen, Appl. Phys. Lett. 88, 233114 (2006)

    Article  ADS  Google Scholar 

  3. S. Bhattacharya, S. Samui, Appl. Phys. Lett. 84, 1564 (2004)

    Article  ADS  Google Scholar 

  4. S.R. Gupta, Q. Xiong, C.K. Adu, U.J. Kim, P.C. Eklund, Nano Lett. 3, 627 (2003)

    Article  ADS  Google Scholar 

  5. K.W. Adu, H.R. Gutiérrez, U.J. Kim, P.C. Eklund, Phys. Rev. B 73, 155333 (2006)

    Article  ADS  Google Scholar 

  6. J. Anaya, A. Torres, A. Martín-Martín, J. Souto, J. Jiménez, A. Rodríguez, T. Rodríguez, Appl. Phys. A (2012). doi:10.1007/s00339-012-7509-y

    Google Scholar 

  7. A. Torres, A. Martín-Martín, O. Martínez, A.C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, T. Rodríguez, Appl. Phys. Lett. 96, 011904 (2010)

    Article  ADS  Google Scholar 

  8. H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)

    Article  ADS  Google Scholar 

  9. I.H. Campbell, P.M. Fauchet, Solid State Commun. 58, 739 (1986)

    Article  ADS  Google Scholar 

  10. Y. Xiang, I. Zardo, L.I. Cao, T. Garma, M. Heilb, J.R. Morante, J. Arbiol, M.L. Brongersma, A. Fontcuberta, I. Morral, Nanotechnology 21, 105703 (2010)

    Article  ADS  Google Scholar 

  11. L. Zhang, W. Ding, Y. Yan, J. Qu, B. Li, L.-Y. Li, K.T. Yue, D.P. Yu, Appl. Phys. Lett. 81, 4446 (2002)

    Article  ADS  Google Scholar 

  12. L. Cao, P. Fan, A.P. Vasudev, J.S. White, Z. Yu, W. Cai, J.A. Schuller, S. Fan, M.L. Brongersma, Nano Lett. 10, 439 (2010)

    Article  ADS  Google Scholar 

  13. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  14. J. Jiménez, I. de Wolf, J.P. Landesman, in Microprobe Characterization of Semiconductors, ed. by J.H. Jiménez. Optoelectron Prop. Semicond. Superlattices, vol. 17 (Taylor and Francis, New York, 2002). Chap. 2

    Google Scholar 

  15. G.S. Doerk, C. Carraro, R. Maboudian, Phys. Rev. B 80, 073306 (2009)

    Article  ADS  Google Scholar 

  16. H.H. Burke, I.P. Herman, Phys. Rev. B 48, 15016 (1993)

    Article  ADS  Google Scholar 

  17. G. Nilsson, G. Nelin, Phys. Rev. B 6, 3777 (1972)

    Article  ADS  Google Scholar 

  18. G.S. Doerk, C. Carraro, R. Maboudian, ACS Nano 4, 4908 (2010)

    Article  Google Scholar 

  19. M. Soini, I. Zardo, E. Uccelli, S. Funk, G. Koblmuller, A. Fontcuberta, G. Abstreiter, Appl. Phys. Lett. 97, 263107 (2010)

    Article  ADS  Google Scholar 

  20. J. Menendez, M. Cardona, Phys. Rev. B 29, 2051 (1984)

    Article  ADS  Google Scholar 

  21. H. Kallel, A. Arbouet, G. BenAssayag, A. Chenhaidar, A. Polié, B. Salem, T. Baron, V. Pailland, Phys. Rev. B 86, 085318 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Spanish Government (MAT-2007-66181-C03 and MAT-2010-20441-C02) and by Junta de Castilla y León (VA051A06-GR202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Anaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anaya, J., Torres, A., Hortelano, V. et al. Raman spectrum of Si nanowires: temperature and phonon confinement effects. Appl. Phys. A 114, 1321–1331 (2014). https://doi.org/10.1007/s00339-013-7966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7966-y

Keywords

Navigation