Skip to main content
Log in

Enhanced ethanol sensing properties of TiO2/ZnO core–shell nanorod sensors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

TiO2-core/ZnO-shell nanorods were synthesized using a two-step process: the synthesis of TiO2 nanorods using a hydrothermal method followed by atomic layer deposition of ZnO. The mean diameter and length of the nanorods were ∼300 nm and ∼2.3 μm, respectively. The cores and shells of the nanorods were monoclinic-structured single-crystal TiO2 and wurtzite-structured single-crystal ZnO, respectively. The multiple networked TiO2-core/ZnO-shell nanorod sensors showed responses of 132–1054 % at ethanol (C2H5OH) concentrations ranging from 5 to 25 ppm at 150 C. These responses were 1–5 times higher than those of the pristine TiO2 nanorod sensors at the same C2H5OH concentration range. The substantial improvement in the response of the pristine TiO2 nanorods to C2H5OH gas by their encapsulation with ZnO may be attributed to the enhanced absorption and dehydrogenation of ethanol. In addition, the enhanced sensor response of the core–shell nanorods can be attributed partly to changes in resistance due to both the surface depletion layer of each core–shell nanorod and the potential barriers built in the junctions caused by a combination of homointerfaces and heterointerfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.H. Tippins, Phys. Rev. A 140, 316 (1965)

    Article  ADS  Google Scholar 

  2. N. Yamazoe, Sens. Actuators B 5, 7 (1991)

    Article  Google Scholar 

  3. G. Gundiah, A. Govindaraj, Chem. Phys. Lett. 351, 189 (2002)

    Article  ADS  Google Scholar 

  4. H.Z. Zhang, Y.C. Kong, Y.Z. Wang, X. Du, Z.G. Bai, J.J. Wang, D.P. Yu, Y. Ding, Q.L. Hang, S.Q. Feng, Solid State Commun. 109, 677 (1999)

    Article  ADS  Google Scholar 

  5. B.C. Kim, K.T. Su, K.S. Park, K.J. Im, T. Noh, M.Y. Sung, S. Kim, Appl. Phys. Lett. 89, 479 (2002)

    Article  ADS  Google Scholar 

  6. H. Kim, C. Jin, S. Park, S. Kim, C. Lee, Sens. Actuators B 161, 594 (2012)

    Article  Google Scholar 

  7. Y.H. Gao, Y. Bando, T. Sato, Appl. Phys. Lett. 81, 2267 (2002)

    Article  ADS  Google Scholar 

  8. C.C. Tang, S.S. Fan, M.L. de la Chapelle, P. Li, Chem. Phys. Lett. 333, 12 (2001)

    Article  ADS  Google Scholar 

  9. M.A. Sanchez-Castillo, C. Couto, W.B. Kim, J.A. Dumesic, Angew. Chem. 116, 1160 (2004)

    Article  Google Scholar 

  10. G. Jagerszki, R.E. Giurskisanyi, L. Hoefler, E. Pretsch, Nano Lett. 7, 1609 (2007)

    Article  ADS  Google Scholar 

  11. C.H. Jin, S.H. Park, H.S. Kim, C. Lee, Sens. Actuators B 161, 223 (2012)

    Article  Google Scholar 

  12. Y. Wang, G. Du, H. Liu, D. Liu, S. Qin, N. Wang, C. Hu, X. Tao, J. Jiao, J. Wang, Z.L. Wang, Adv. Funct. Mater. 18, 1131 (2008)

    Article  Google Scholar 

  13. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, Sens. Actuators B 93, 338 (2003)

    Article  Google Scholar 

  14. I.D. Kim, A. Rothschild, B.H. Lee, D.Y. Kim, S.M. Jo, H.L. Tuller, Nano Lett. 6, 2009 (2006)

    Article  ADS  Google Scholar 

  15. L. Francioso, A.M. Taurino, A. Forleo, P. Siciliano, Sens. Actuators B 130, 70 (2008)

    Article  Google Scholar 

  16. P. Hu, G. Du, W. Zhou, J. Cui, J. Lin, H. Liu, D. Liu, J. Wang, S. Chen, ACS Appl. Mater. Interfaces 2, 3263 (2010)

    Article  Google Scholar 

  17. Y. Wang, W. Jia, T. Strout, A. Schempf, H. Zhang, B. Li, J. Cui, Y. Leia, Electroanalysis 21(12), 1432 (2009)

    Article  Google Scholar 

  18. J.Y. Park, S.-W. Choi, J.-W. Lee, C. Lee, S.S. Kim, J. Am. Ceram. Soc. 92(11), 2551 (2009)

    Article  Google Scholar 

  19. Y. Zeng, T. Zhang, L. Wang, M. Kang, H. Fan, R. Wang, Y. He, Sens. Actuators B 140, 73 (2009)

    Article  Google Scholar 

  20. X.J. Yue, T.S. Hong, X. Xu, Z. Li, Chin. Phys. Lett. 28, 090701 (2011)

    Article  ADS  Google Scholar 

  21. L. Gu, K. Zheng, Y. Zhou, J. Li, X. Mo, G.R. Patzke, G. Chen, Sens. Actuators B (2010). doi:10.1016/j.snb.2010.12.024

    Google Scholar 

  22. D.E. Williams, Solid State Gas Sensors (Hilger, Bristol, 1987)

    Google Scholar 

  23. N. Kilinç, E. Sennik, Z.Z. Ozuturk, Thin Solid Films 520, 953 (2011)

    Article  ADS  Google Scholar 

  24. Y.J. Chen, X.Y. Xue, Y.G. Wang, T.H. Wang, Appl. Phys. Lett. 87, 233503 (2005)

    Article  ADS  Google Scholar 

  25. F. Pourfayaz, Y. Mortazavi, A. Khodadadi, S. Ajami, Sens. Actuators B 130, 625 (2008)

    Article  Google Scholar 

  26. G. Neri, A. Bonavita, G. Micali, N. Donato, F.A. Deorsola, P. Mossino, I. Amato, B. De Benedetti, Sens. Actuators B 117, 196 (2006)

    Article  Google Scholar 

  27. S. Hemmati, A.A. Firoozb, A.A. Khodadadi, Y. Mortazavi, Sens. Actuators B 160, 1298 (2011)

    Article  Google Scholar 

  28. T.J. Hsueh, C.L. Hsu, S.J. Chang, I.C. Chen, Sens. Actuators B 126, 473 (2007)

    Article  Google Scholar 

  29. P. Hu, G. Du, W. Zhou, J. Cui, J. Lin, H. Liu, D. Liu, J. Wang, S. Chen, Appl. Mater. Interfaces 2, 3263 (2010)

    Article  Google Scholar 

  30. X. Chu, D. Jiang, Y. Guo, C. Zheng, Sens. Actuators B 120, 177 (2006)

    Article  Google Scholar 

  31. Y.J. Li, K.M. Li, C.Y. Wang, C.I. Kuo, L.J. Chen, Sens. Actuators B 161, 734 (2012)

    Article  Google Scholar 

  32. K.D. Schierbaum, U. Weimar, W. Gopel, R. Kowalkowski, Sens. Actuators B 3, 205 (1991)

    Article  Google Scholar 

  33. A. Gurlo, Chem. Phys. Chem. 7, 2041 (2006)

    Article  Google Scholar 

  34. J. Zhang, S. Wang, M. Xu, Y. Wang, B. Zhu, S. Zhang, W. Huang, S. Wu, Cryst. Growth Des. 9, 3532 (2009)

    Article  Google Scholar 

  35. S.K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 141, 581 (2007)

    Article  Google Scholar 

  36. T. Jinkawa, G. Sakai, J. Tamaki, N. Miura, N. Yamazoe, J. Mol. Catal. A, Chem. 155, 193 (2000)

    Article  Google Scholar 

  37. B.R. Huang, J.C. Lin, Sens. Actuators B 174, 389 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Key Research Institute Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0018394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., An, S., Ko, H. et al. Enhanced ethanol sensing properties of TiO2/ZnO core–shell nanorod sensors. Appl. Phys. A 115, 1223–1229 (2014). https://doi.org/10.1007/s00339-013-7964-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7964-0

Keywords

Navigation