Skip to main content
Log in

Defect-dominated optical emission and enhanced ultraviolet photoconductivity properties of ZnO nanorods synthesized by simple and catalyst-free approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the defect-dominated light emission and ultraviolet (UV) photoconductivity characteristics of ZnO nanorods (NRs) fabricated using a facile, cost-effective, and catalyst-free thermal decomposition route under varying reaction temperatures. The morphological and structural studies reveal the formation of homogeneous quality nanorods in large scale at the highest reaction temperature of 600 C. The luminescence feature of the nanorods is dominated by the defect related emission over the typical band edge emission. The variation of band-edge and native defect-related emission response of the samples has been correlated to the morphology and microstructure. In photoconductivity studies, the IV characteristics of the ZnO NRs prepared at different reaction temperatures in dark and under UV illumination (λ=365 nm) follow the power law, i.e., IαV r. An enhanced ultraviolet photodetection has been observed in the nanorods fabricated at the highest reaction temperature of 600 C. The sample prepared at highest reaction temperature of 600 C exhibits UV photosensitivity value (photo-to-dark current ratio) of around 1.18×103, which is much higher in magnitude compared to that of the samples prepared at lower reaction temperatures. The enhanced photoconductivity may be assigned to the development of uniformity and homogeneity of the nanorods. Further development of such ZnO nanostructures can form the basis of promising prototype luminescent and UV photodetecting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.F. Zheng, W. Lu, C.M. Lieber, Adv. Mater. 21, 1890 (2004)

    Article  Google Scholar 

  2. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, Adv. Mater. 14, 418 (2002)

    Article  Google Scholar 

  3. H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. 14, 158–160 (2002)

    Article  Google Scholar 

  4. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett. 7, 1003–1009 (2007)

    Article  ADS  Google Scholar 

  5. Z.-P. Sun, L. Liu, L. Zhang, D.-Z. Jia, Nanotechnology 17, 2266–2270 (2006)

    Article  ADS  Google Scholar 

  6. K. Westermark, H. Rensmo, T.A.C. Lees, J.G. Vos, H.T. Siegbahn, J. Phys. Chem. B 106, 10108 (2002)

    Article  Google Scholar 

  7. N. Golego, S.A. Stuenikin, M. Cocivera, J. Electrochem. Soc. 147, 1592 (2000)

    Article  Google Scholar 

  8. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)

    Article  ADS  Google Scholar 

  9. C.-C. Lin, W.-H. Lin, Y.-Y. Li, J. Phys. D: Appl. Phys. 41, 225411 (2008)

    Article  ADS  Google Scholar 

  10. B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, D. Yu, Nanotechnology 16, 2567 (2005)

    Article  ADS  Google Scholar 

  11. X.W. Sun, L.D. Wang, H.S. Kwok, Thin Solid Films 360, 75 (2000)

    Article  ADS  Google Scholar 

  12. J.Y. Park, D.J. Lee, Y.S. Yun, J.H. Moon, B.T. Lee, S.S. Kim, J. Cryst. Growth 276, 158 (2005)

    Article  ADS  Google Scholar 

  13. J.S. Jie, G.Z. Wang, Q.T. Wang, Y.M. Chen, X.H. Han, X.P. Wang, J.G. Hou, J. Phys. Chem. B 108, 11976 (2004)

    Article  Google Scholar 

  14. J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, Z. Ren, Nanoscale Res. Lett. 6, 404 (2011)

    Article  ADS  Google Scholar 

  15. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Pandey, Opto-Electron. Rev. 18, 467 (2010)

    Article  ADS  Google Scholar 

  16. R. Kripal, A.K. Gupta, R.K. Srivastava, S.K. Mishra, Spectrochim. Acta Part A 79, 1605 (2011)

    Article  ADS  Google Scholar 

  17. M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Chem. Phys. Lett. 363, 123 (2002)

    Article  ADS  Google Scholar 

  18. S.K. Mishra, R.K. Srivastava, S.G. Prakash, J. Mater. Sci., Mater. Electron. 24, 125–134 (2013)

    Article  Google Scholar 

  19. X. Su, Z. Zhang, Y. Wang, M. Zhu, J. Phys. D: Appl. Phys. 38, 3934 (2005)

    Article  ADS  Google Scholar 

  20. J.J. Wu, S.C. Liu, Adv. Mater. 14, 215 (2002)

    Article  Google Scholar 

  21. W.D. Yu, X.M. Li, X.D. Gao, Appl. Phys. Lett. 84, 2658 (2004)

    Article  ADS  Google Scholar 

  22. C.-C. Lin, Y.-Y. Li, Mater. Chem. Phys. 113, 334 (2009)

    Article  Google Scholar 

  23. S.K. Mishra, R.K. Srivastava, S.G. Prakash, J. Alloys Compd. 539, 1–6 (2012)

    Article  Google Scholar 

  24. F. Gonzalez-Posada, R. Songmunang, M.D. Hertog, E. Monroy, Nano Lett. 12, 172–176 (2012)

    Article  ADS  Google Scholar 

  25. K. Moazzami, T.E. Murphy, J.D. Phillips, M.C.-K. Cheung, A.N. Cartwright, Semicond. Sci. Technol. 21, 717 (2006)

    Article  ADS  Google Scholar 

  26. Y. Jin, J. Wang, B. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8, 1649–1653 (2008)

    Article  ADS  Google Scholar 

  27. Y.K. Su, S.M. Peng, L.W. Ji, C.Z. Wu, W.B. Cheng, C.H. Liu, Langmuir 26, 603–606 (2010)

    Article  Google Scholar 

  28. J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, S.T. Lee, Nano Lett. 6, 1887 (2006)

    Article  ADS  Google Scholar 

  29. L. Peng, J.-L. Zhai, D.-J. Wang, P. Wang, Y. Zhang, S. Pang, T.-F. Xie, Chem. Phys. Lett. 456, 231 (2008)

    Article  ADS  Google Scholar 

  30. S.E. Ahn, H.S. Lee, H. Kim, S. Kim, B.K. Kang, K.H. Kim, G.T. Kim, Appl. Phys. Lett. 84, 5022 (2004)

    Article  ADS  Google Scholar 

  31. S.E. Ahn, H.J. Ji, K. Kim, G.T. Kim, C.H. Bae, S.M. Park, Y.K. Kim, J.S. Ha, Appl. Phys. Lett. 90, 153106 (2007)

    Article  ADS  Google Scholar 

  32. A. Bera, D. Basak, Appl. Phys. Lett. 94, 163119 (2009)

    Article  ADS  Google Scholar 

  33. A. Bera, D. Basak, Appl. Phys. Lett. 93, 053102 (2008)

    Article  ADS  Google Scholar 

  34. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Pandey, Electro. Mater. Lett. 7, 31 (2011)

    Article  ADS  Google Scholar 

  35. A. Ghosh, N. Karak, T.K. Kundu, AIP Conf. Proc. 1536, 177–178 (2013)

    Article  ADS  Google Scholar 

  36. Y. Gu, I.L. Kuskovsky, M. Yin, S. O’Brien, G.F. Neumark, Appl. Phys. Lett. 85, 3833–3835 (2004)

    Article  ADS  Google Scholar 

  37. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  ADS  Google Scholar 

  38. S. Bayan, D. Mohanta, J. Appl. Lett. 110, 054316 (2011)

    ADS  Google Scholar 

  39. S.V. Bhat, S.R.C. Vivekchand, A. Govindraj, C.N.R. Rao, Solid State Commun. 149, 510–514 (2009)

    Article  ADS  Google Scholar 

  40. T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, Jpn. J. Appl. Phys. 43, 2602–2606 (2004)

    Article  ADS  Google Scholar 

  41. J.D. Ye, S.L. Gu, F. Qin, S.M. Zhu, S.M. Liu, X. Zhou, W. Liu, L.Q. Hu, R. Zhang, Y. Shi, Y.D. Zheng, Appl. Phys. A, Mater. Sci. Process. 81, 759 (2005)

    Article  ADS  Google Scholar 

  42. M. Liu, A.H. Kitai, P. Mascher, J. Lumin. 54, 35–42 (1992)

    Article  Google Scholar 

  43. N. Adhlakha, K.L. Yadav, A. Kumar, P.K. Patel, J. Rani, M. Rawat, Physica B 407, 3427–3433 (2012)

    Article  ADS  Google Scholar 

  44. Z.-M. Liao, H.-Z. Zhang, Y.-B. Zhou, J. Xu, J.M. Zhang, D.-P. Yu, Phys. Lett. A 372, 4505–4509 (2008)

    Article  ADS  MATH  Google Scholar 

  45. S. Wei, J. Lian, H. Wu, Mater. Charact. 61, 1239–1244 (2010)

    Article  Google Scholar 

  46. P.K.C. Pillai, N. Shroff, N.N. Kumar, A.K. Tripathi, Phys. Rev. B 32, 8228 (1985)

    Article  ADS  Google Scholar 

  47. R.W. Smith, A. Rose, Phys. Rev. 97, 1531 (1955)

    Article  ADS  Google Scholar 

  48. Z.-M. Liao, Z.-K. Lv, Y.-B. Zhou, J. Xu, J.-M. Zhang, D.-P. Yu, Nanotechnology 19, 335204 (2008)

    Article  Google Scholar 

  49. J.F. Randal, J.H.F. Wilkins, Proc. R. Soc. A 184, 366 (1945)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors S.K.M. and S.B. are grateful to Saha Institute of Nuclear Physics (SINP), Kolkata, India, for providing financial assistance under post-doctoral research program. The authors are also thankful to Prof. A.C. Pandey for making XRD and UV-visible absorption spectroscopy measurements at the Nanotechnology Application Centre, University of Allahabad, Allahabad, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheo K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S.K., Bayan, S., Chakraborty, P. et al. Defect-dominated optical emission and enhanced ultraviolet photoconductivity properties of ZnO nanorods synthesized by simple and catalyst-free approach. Appl. Phys. A 115, 1193–1203 (2014). https://doi.org/10.1007/s00339-013-7959-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7959-x

Keywords

Navigation