Skip to main content
Log in

Aligned CuO nanorod arrays: fabrication and anisotropic ferromagnetism

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Copper oxide (CuO) is a p-type semiconductor with a band gap of 1.2 eV, which is well known in high-temperature superconductor and antiferromagnetic (AFM) materials through Cu–O–Cu super-exchange interaction. In this paper, we report the strong anisotropic ferromagnetism (FM) in aligned CuO nanorod arrays synthesized by a microwave-assisted hydrothermal method. The transmission electron microscopy (TEM) image shows that the CuO nanorod consists of a large number of smaller nanorods with almost the same growth direction. The X-ray diffraction (XRD) pattern indicates that the CuO nanorods are well crystallized with highly preferred orientation of the [020] direction. These CuO nanorod arrays show room-temperature ferromagnetism, with strong magnetic anisotropy when the magnetic field is applied perpendicular or parallel to the rod axis. This phenomenon of room-temperature ferromagnetism in those aligned CuO nanorods might originate from uncompensated surface spins and shape anisotropy of the nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.U. Lee, K. Ahn, S.J. Lee, J.P. Kim, H.G. Kim, S.Y. Jeong, C.R. Cho, Appl. Phys. Lett. 98, 193114 (2011)

    Article  ADS  Google Scholar 

  2. H.W. Yan, J.B. Hou, Z.P. Fu, B.F. Yang, P.H. Yang, K.P. Liu, M.W. Wen, Y.J. Chen, S.Q. Fu, F.Q. Li, Mater. Res. Bull. 44, 1954 (2009)

    Article  Google Scholar 

  3. J.Y. Liao, B.X. Lei, Y.F. Wang, J.M. Liu, C.Y. Su, D.B. Kuang, Chem. Eur. J. 17, 1352 (2011)

    Article  Google Scholar 

  4. J.Y. Chun, J.W. Lee, Eur. J. Inorg. Chem. 2010, 4251 (2010)

    Article  Google Scholar 

  5. A. Nadarajah, R. Könenkamp, Phys. Status Solidi B 248, 334 (2011)

    Article  ADS  Google Scholar 

  6. C. Jin, H. Kim, K. Baek, H.W. Kim, C. Lee, J. Mater. Sci., Mater. Electron. 21, 1154 (2010)

    Article  Google Scholar 

  7. K.J. Chen, F.Y. Hung, S.J. Chang, Z.S. Hu, J. Electrochem. Soc. 157, H241 (2010)

    Article  Google Scholar 

  8. G.H. Waller, X.W. Du, Semicond. Sci. Technol. 26, 075001 (2011)

    Article  ADS  Google Scholar 

  9. F. Kokai, K. Uchiyama, T. Shimazu, A. Koshio, Appl. Phys. A 101, 497 (2010)

    Article  ADS  Google Scholar 

  10. K. Han, J.J. Wang, Y.F. Sheng, F.L. Ju, X.P. Sheng, Y.X. Wu, G. Tang, Phys. Lett. A 376, 1871 (2012)

    Article  ADS  Google Scholar 

  11. H.W. Liang, S. Liu, S.H. Yu, Adv. Mater. 22, 3925 (2010)

    Article  Google Scholar 

  12. J.B. Reitz, E.I. Solomon, J. Am. Chem. Soc. 120, 11467 (1998)

    Article  Google Scholar 

  13. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)

    Article  ADS  Google Scholar 

  14. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Phys. Rep. 422, 65 (2005)

    Article  ADS  Google Scholar 

  15. H.M. Xiao, L.P. Zhua, X.M. Liu, S.Y. Fu, Solid State Commun. 141, 431 (2007)

    Article  ADS  Google Scholar 

  16. K. Muraleedharan, C.K. Subramaniam, N. Venkataramani, T.K. Gundu Rao, C.M. Srivastava, V. Sankaranarayan, R. Srinivasan, Solid State Commun. 76, 727 (1990)

    Article  ADS  Google Scholar 

  17. M. O’Feeffe, F.S. Stone, J. Phys. Chem. Solids 23, 261 (1962)

    Article  Google Scholar 

  18. A. Punnoose, H. Magnone, M.S. Seehra, Phys. Rev. B 64, 174420 (2001)

    Article  ADS  Google Scholar 

  19. C. Díaz-Guerra, M. Vila, J. Piqueras, Appl. Phys. Lett. 96, 193105 (2010)

    Article  ADS  Google Scholar 

  20. D.Q. Gao, J. Zhang, J.Y. Zhu, J. Qi, Z.H. Zhang, W.B. Sui, H.G. Shi, D.S. Xue, Nanoscale Res. Lett. 5, 769 (2010)

    Article  ADS  Google Scholar 

  21. M.A. Dar, Y.S. Kim, W.B. Kim, J.M. Sohn, H.S. Shin, Appl. Surf. Sci. 254, 7477 (2008)

    Article  ADS  Google Scholar 

  22. H.W. Qin, Z.L. Zhang, X. Liu, Y.J. Zhang, J.F. Hu, J. Magn. Magn. Mater. 322, 1994 (2010)

    Article  ADS  Google Scholar 

  23. D.Q. Gao, G.J. Yang, J.Y. Li, J. Zhang, J.L. Zhang, D.S. Xue, J. Phys. Chem. C 114, 18347 (2010)

    Article  Google Scholar 

  24. L.Q. Liu, K.Q. Hong, T.T. Hu, M.X. Xu, J. Alloys Compd. 511, 195 (2012)

    Article  Google Scholar 

  25. J.B. Cui, U.J. Gibson, Appl. Phys. Lett. 87, 133108 (2005)

    Article  ADS  Google Scholar 

  26. P. Bender, A. Günther, A. Tschöpe, R. Birringer, J. Magn. Magn. Mater. 323, 2055 (2011)

    Article  ADS  Google Scholar 

  27. A. Filippetti, V. Fiorentini, Phys. Rev. Lett. 95, 086405 (2005)

    Article  ADS  Google Scholar 

  28. B.X. Yang, J.M. Tranquada, G. Shirane, Phys. Rev. B 38, 174 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities, the Foundation for Climax Talents Plan in Six Big Fields of Jiangsu Province, China (Grant No. 1107020070), and Large Equipment Grants of Southeast University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunquan Hong or Mingxiang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Hong, K., Ge, X. et al. Aligned CuO nanorod arrays: fabrication and anisotropic ferromagnetism. Appl. Phys. A 115, 1147–1150 (2014). https://doi.org/10.1007/s00339-013-7958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7958-y

Keywords

Navigation