Skip to main content

Grain boundary diffusion induced reaction layer formation in Fe/Pt thin films


The solid-state reaction in Pt(15 nm)/Fe(15 nm) and Pt(15 nm)/Ag(10 nm)/Fe(15 nm) thin films after post-annealing at 593 K and 613 K for different annealing times has been studied. The structural properties of these samples were investigated by various methods including depth profiling with secondary neutral mass spectrometry, transmission electron microscopy, and X-ray diffraction. It is shown that after annealing at the above temperatures where the bulk diffusion processes are still frozen, homogeneous reaction layers of FePt and FePt with about 10 at.% Ag, respectively, have been formed. Corresponding depth profiles of the element concentrations revealed strong evidence that the formation mechanism is based on a grain boundary diffusion induced solid-state reaction in which the reaction interfaces sweep perpendicularly to the original grain boundary. Interestingly, X-ray diffraction indicated that in both thin-film systems after the solid-state reaction the ordered L10 FePt phase, which is the requested phase for future magnetic data storage applications, is also present.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    G. Schmitz, D. Baither, M. Kasparzak, T.H. Kim, B. Krause, Scr. Mater. 63, 484 (2010)

    Article  Google Scholar 

  2. 2.

    V.M. Koshevich, A.N. Gladkikh, M.V. Karpovskyi, V.N. Klimenko, Interface Sci. 2, 261 (1994)

    Google Scholar 

  3. 3.

    M. Kajihara, Scr. Mater. 54, 1767 (2006)

    Article  Google Scholar 

  4. 4.

    O. Penrose, Acta Mater. 52, 3901 (2004)

    Article  Google Scholar 

  5. 5.

    D.N. Yoon, Rev. Adv. Mater. Sci. 19, 43 (1989)

    ADS  Article  Google Scholar 

  6. 6.

    S. Inomata, M.O.M. Kajihara, J. Mater. Sci. 46, 2410 (2011)

    ADS  Article  Google Scholar 

  7. 7.

    F. Hartung, G. Schmitz, Phys. Rev. B 64, 245418 (2001)

    ADS  Article  Google Scholar 

  8. 8.

    D. Baiter, T.H. Kim, G. Schmitz, Scr. Mater. 58, 99 (2008)

    Article  Google Scholar 

  9. 9.

    J. Sheng, U. Welzer, E.J. Mittemeijer, Suppl. Issues Z. Kristallogr. 30, 247 (2009)

    Article  MATH  Google Scholar 

  10. 10.

    T. Takenaka, M. Kajihara, Mater. Trans. 47, 822 (2006)

    Article  Google Scholar 

  11. 11.

    J. Chakraborty, U. Welzer, E.J. Mittemeijer, J. Appl. Phys. 103, 113512 (2008)

    ADS  Article  Google Scholar 

  12. 12.

    G. Molnár, G. Erdélyi, G.A. Langer, D.L. Beke, A. Csik, G.L. Katona, L. Daróczi, M. Kis-Varga, A. Dudás, Vacuum 98, 70 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    D.L. Beke, G.A. Langer, G. Molnár, G. Erdélyi, G.L. Katona, A. Lakatos, K. Vad, Philos. Mag. 93, 16 (2013). 1960

    Article  Google Scholar 

  14. 14.

    S.N. Piramanayagam, T.C. Chong (eds.), Developments in Data Storage: Materials Perspective (John Wiley, New York, 2012)

    Google Scholar 

  15. 15.

    J. Lyubina, B. Rellinghaus, O. Gutfleisch, M. Albrecht, Structure and magnetic properties of L10-ordered Fe–Pt alloys and nanoparticles, in Handbook of Magnetic Materials, vol. 19, ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2011), pp. 291–395

    Google Scholar 

  16. 16.

    A.T. McCallum, P. Krone, F. Springer, C. Brombacher, M. Albrecht, E. Dobisz, M. Grobis, D. Weller, O. Hellwig, Appl. Phys. Lett. 98, 242503 (2011)

    ADS  Article  Google Scholar 

  17. 17.

    C. Brombacher, M. Grobis, J. Lee, J. Fidler, T. Eriksson, T. Werner, O. Hellwig, M. Albrecht, Nanotechnology 23, 025301 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    D. Makarov, J. Lee, C. Brombacher, C. Schubert, M. Fuger, D. Suess, J. Fidler, M. Albrecht, Appl. Phys. Lett. 96, 062501 (2010)

    ADS  Article  Google Scholar 

  19. 19.

    T. Kai, T. Maeda, A. Kikitsu, J. Akiyama, T. Nagase, T. Kishi, J. Appl. Phys. 95, 609 (2004)

    ADS  Article  Google Scholar 

  20. 20.

    C. Brombacher, H. Schletter, M. Daniel, P. Matthes, N. Jöhrmann, M. Maret, D. Makarov, M. Hietschold, M. Albrecht, J. Appl. Phys. 112, 073912 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    M. Maret, C. Brombacher, P. Matthes, D. Makarov, N. Boudet, M. Albrecht, Phys. Rev. B 86, 024204 (2012)

    ADS  Article  Google Scholar 

  22. 22.

    Z.L. Zhao, J. Ding, K. Inaba, J.S. Chen, J.P. Wang, Appl. Phys. Lett. 83, 2196 (2003)

    ADS  Article  Google Scholar 

  23. 23.

    S.S. Kang, D.E. Nikles, J.W. Harrel, J. Appl. Phys. 93, 7178 (2003)

    ADS  Article  Google Scholar 

  24. 24.

    C.Y. You, Y.K. Takahashi, K. Hono, J. Appl. Phys. 100, 056105 (2006)

    ADS  Article  Google Scholar 

  25. 25.

    Z.L. Zhao, J.S. Chen, J. Ding, B.H. Liu, J.B. Yi, J.P. Wang, Appl. Phys. Lett. 88, 052503 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    T.O. Seki, Y.K. Takahasi, K. Hono, J. Appl. Phys. 103, 023910 (2008)

    ADS  Article  Google Scholar 

  27. 27.

    C. Chen, O. Kitakami, S. Okamoto, Y. Shimada, Appl. Phys. Lett. 76, 3218 (2000)

    ADS  Article  Google Scholar 

  28. 28.

    O. Kitakami, Y. Shimada, Y. Oikawa, H. Daimon, K. Fukamichi, Appl. Phys. Lett. 78, 1104 (2001)

    ADS  Article  Google Scholar 

  29. 29.

    H. Oechsner, R. Getto, M. Kopnarski, J. Appl. Phys. 105, 063523 (2009)

    ADS  Article  Google Scholar 

  30. 30.

    L. Péter, G.L. Katona, Z. Berényi, K. Vad, G.A. Langer, E. Tóth-Kádar, J. Pádár, L. Pogány, I. Bakonyi, Electrochim. Acta 53, 837 (2007)

    Article  Google Scholar 

  31. 31.

    H. Mehrer (ed.), Diffusion in Solid Metals and Alloys, Landolt-Börnstein, New Ser., III/26 (Springer, Berlin, 1990)

    Google Scholar 

  32. 32.

    A. Makovecz, G. Erdelyi, D.L. Beke, Thin Solid Films 520, 2362 (2012)

    ADS  Article  Google Scholar 

  33. 33.

    A. Lakatos, G. Erdélyi, A. Makovec, G.A. Langer, A. Csik, K. Vad, D.L. Beke, Vacuum 86, 724 (2012)

    Article  Google Scholar 

  34. 34.

    R.V. Chepulskii, S. Curtarolo, Appl. Phys. Lett. 97, 221908 (2010)

    ADS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the support of the Hungarian Scientific Research Fund (OTKA) through Grant CK 80126 and by the TÁMOP-4.2.2.A-11/1/KONV-2012-0036 projects. These projects are implemented through the New Hungary Development Plan co-financed by the European Social Fund and the European Regional Development Fund. This research was also supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of the TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National Excellence Program’ (author G.L. Katona). Support from the Hungarian–Chinese bilateral project, TÉT_12_CN-1-2012-0036, is also acknowledged.

Author information



Corresponding author

Correspondence to G. L. Katona.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katona, G.L., Vladymyrskyi, I.A., Makogon, I.M. et al. Grain boundary diffusion induced reaction layer formation in Fe/Pt thin films. Appl. Phys. A 115, 203–211 (2014).

Download citation


  • Reaction Layer
  • FePt
  • Longe Annealing Time
  • FePt Film
  • Alloyed Zone