Applied Physics A

, Volume 113, Issue 2, pp 263–272 | Cite as

Structuring of photosensitive material below diffraction limit using far field irradiation

  • Nataraja Sekhar Yadavalli
  • Marina Saphiannikova
  • Nino Lomadze
  • Leonid M. Goldenberg
  • Svetlana Santer
Rapid communication

Abstract

In this paper, we report on in-situ atomic force microscopy (AFM) studies of topographical changes in azobenzene-containing photosensitive polymer films that are irradiated with light interference patterns. We have developed an experimental setup consisting of an AFM combined with two-beam interferometry that permits us to switch between different polarization states of the two interfering beams while scanning the illuminated area of the polymer film, acquiring corresponding changes in topography in-situ. This way, we are able to analyze how the change in topography is related to the variation of the electrical field vector within the interference pattern. It is for the first time that with a rather simple experimental approach a rigorous assignment can be achieved. By performing in-situ measurements we found that for a certain polarization combination of two interfering beams [namely for the SP (↕, ↔) polarization pattern] the topography forms surface relief grating with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We believe that this relatively simple method could be extremely valuable to, for instance, produce structural features below the diffraction limit at high-throughput, and this could significantly contribute to the search of new fabrication strategies in electronics and photonics industry.

Supplementary material

339_2013_7945_MOESM1_ESM.docx (111 kb)
(DOCX 111 kB)

References

  1. 1.
    Y. Zhao, T. Ikeda, Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals (Wiley, Hoboken, 2009) CrossRefGoogle Scholar
  2. 2.
    C. Barrett, P. Rochon, A. Natansohn, J. Phys. Chem. 100, 8836 (1996) CrossRefGoogle Scholar
  3. 3.
    V. Toschevikov, M. Saphiannikov, G. Heirich, J. Phys. Chem. B 113, 5032 (2009) CrossRefGoogle Scholar
  4. 4.
    V. Toschevikov, M. Saphiannikov, G. Heirich, J. Phys. Chem. B 116, 913 (2012) CrossRefGoogle Scholar
  5. 5.
    M. Saphiannikova, T.M. Geue, O. Henneberg, K. Morawetz, U. Pietsch, J. Chem. Phys. 120, 4039 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    K.G. Yager, C.J. Barrett, J Photochem. Photobiol. A: Chem. 182, 250 (2006) CrossRefGoogle Scholar
  7. 7.
    H. Rau, in Photochemistry and Photophysics, vol. III, ed. by J.F. Rabeck (CRC, Boca Raton, 2009), p. 119 Google Scholar
  8. 8.
    T. Todorov, L. Nikolova, T. Tomova, Appl. Opt. 23, 4309 (1984) ADSCrossRefGoogle Scholar
  9. 9.
    C. Jones, S. Day, Nature 351, 15 (1991) ADSCrossRefGoogle Scholar
  10. 10.
    R. Loucif-Saibi, K. Nakatani, J.A. Delaire, M. Dumont, Z. Sekkat, Chem. Mater. 5, 229 (1993) CrossRefGoogle Scholar
  11. 11.
    C.J. Barrett, P.L. Rochon, A.L. Natasohn, J. Chem. Phys. 109, 1505 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    S. Bian, L. Li, J. Kumar, D.Y. Kim, S.K. Tripathy, Appl. Phys. Lett. 73, 1817 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    J. Kumar, L. Li, X.L. Xiang, D.Y. Kim, T. Sung-Lee, S.K. Tripathy, Appl. Phys. Lett. 72, 2096 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    X.L. Jiang, L. Li, J. Kumar, D.Y. Kim, S.K. Tripathy, Appl. Phys. Lett. 72, 2502 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    T.G. Pedersen, P.M. Johensen, N.C.R. Holme, P.S. Ramanujam, S. Hvilsted, Phys. Rev. Lett. 80, 89 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    D. Bublitz, B. Fleck, L. Wenke, Appl. Phys. B 72, 931 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    F. Fabbri, D. Garrot, K. Lahlil, J.P. Boilot, Y. Lassailly, J. Peretti, J. Phys. Chem. B 115, 1363 (2011) CrossRefGoogle Scholar
  18. 18.
    F. Lagugne Labarthet, C. Sourisseau, R.D. Schaller, R.J. Saykally, P. Rochon, J. Phys. Chem. B 108, 17059 (2004) CrossRefGoogle Scholar
  19. 19.
    O. Cha-Hwan, H. Ui-Jang, K. Jung-Sung, J. Korean Phys. Soc. 50, 1022 (2007) CrossRefGoogle Scholar
  20. 20.
    H.S. Kang, S. Lee, J. Park, Adv. Funct. Mater. 21, 4412 (2011) CrossRefGoogle Scholar
  21. 21.
    L.M. Goldenberg, V. Lisinetskii, Y. Gritsai, J. Stumpe, S. Schrader, Opt. Mater. Express 2, 11 (2012) CrossRefGoogle Scholar
  22. 22.
    L.M. Goldenberg, V. Lisinetskii, Y. Gritsai, J. Stumpe, S. Schrader, Adv. Mater. 24, 3339 (2012) CrossRefGoogle Scholar
  23. 23.
    T. König, V.V. Tsukruk, S. Santer, ACS Appl. Mater. Interfaces 5, 6009 (2013) CrossRefGoogle Scholar
  24. 24.
    N.S. Yadavalli, F. Linde, A. Kopyshev, S. Santer, ACS Appl. Mater. Interfaces (2013). doi:10.1021/am400682w Google Scholar
  25. 25.
    D. Elfström, B. Guilhabert, J. McKendry, S. Poland, Z. Gong, D. Massoubre, E. Richardson, B.R. Rae, G. Valentine, G. Blanco-Gomez, E. Gu, J.M. Cooper, R.K. Henderson, M.D. Dawson, Opt. Express 17, 23522 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    N. Seok-In, K. Seok-Soon, J. Jang, O. Seung-Hwan, K. Juhwan, K. Dong-Yu, Adv. Funct. Mater. 18, 3956 (2008) CrossRefGoogle Scholar
  27. 27.
    D. Sawaki, J. Amako, Proc. SPIE 7202, 72020L.1 (2009) CrossRefGoogle Scholar
  28. 28.
    G.D. Kubiak, D.R. Kania, OSA Trends in Optics and Photonics. 4 (1996) Google Scholar
  29. 29.
    D.K. Gramotnev, S.I. Bozhevolnyi, Nat. Photonics 4, 83 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    X. Luo, T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    T. König, S. Santer, Nanotechnology 23, 485304 (2012) CrossRefGoogle Scholar
  32. 32.
    T. König, S. Santer, Nanotechnology 23, 155301 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    T. König, N.S. Yadavalli, S. Santer, Plasmonics 7, 535 (2012) CrossRefGoogle Scholar
  34. 34.
    T. König, L.M. Goldenberg, O. Kulikovska, L. Kulikovsky, J. Stumpe, S. Santer, Soft Matter 7, 4174 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    T. König, N.S. Yadavalli, S. Santer, J. Mater. Chem. 22, 5945 (2012) CrossRefGoogle Scholar
  36. 36.
    A. Sundaramurthy, P.J. Schuck, N.R. Conley, D.P. Fromm, G.S. Kino, W.E. Moerner, Nano Lett. 6, 355 (2006) ADSCrossRefGoogle Scholar
  37. 37.
    Z. Sekkat, H. Ishitobi, M. Tanabe, S. Shoji, S. Kawata, Moroc. J. Condens. Mater. 11, 111 (2009) Google Scholar
  38. 38.
    W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, Nano Lett. 4, 1085 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    L.M. Goldenberg, L. Kulikovsky, O. Kulikovska, J. Tomczyk, J. Stumpe, Langmuir 26, 2214 (2009) CrossRefGoogle Scholar
  40. 40.
    L. Nikolova, P.S. Ramanujam, Polarization Holography (Cambridge Academic Press, UK, 2009) CrossRefGoogle Scholar
  41. 41.
    N.K. Viswanathan, S. Balasubramanian, L. Li, S.K. Tripathy, J. Kumar, Jpn. J. Appl. Phys. 38, 5928 (1999) ADSCrossRefGoogle Scholar
  42. 42.
    M. Saphiannikova, D. Neher, J Phys. Chem. B 109, 19428 (2005) CrossRefGoogle Scholar
  43. 43.
    V. Toshchevikov, M. Saphiannikova, G. Heinrich, J. Phys. Chem. B 113, 5032 (2009) CrossRefGoogle Scholar
  44. 44.
    F. Lagugne Labarthet, J.L. Bruneel, V. Rodriguez, C. Sourisseau, J. Phys. Chem. B 108, 1267 (2004) CrossRefGoogle Scholar
  45. 45.
    I. Naydenova, L. Nikolova, T. Todorov, N.C.R. Holme, P.S. Ramanujam, S. Hvilsted, J. Opt. Soc. Am. B 15, 1257 (1998) ADSCrossRefGoogle Scholar
  46. 46.
    A. Sobolewska, A. Miniewicz, J. Phys. Chem. B 112, 4526 (2008) CrossRefGoogle Scholar
  47. 47.
    F. Lagugne Labarthet, T. Buffeteau, C. Sourisseau, J. Appl. Phys. 90, 3149 (2001) ADSCrossRefGoogle Scholar
  48. 48.
    F. Lagugne Labarthet, J.L. Bruneel, T. Buffeteau, C. Sourisseau, J. Phys. Chem. B 108, 6949 (2004) CrossRefGoogle Scholar
  49. 49.
    H.J. Eichler, P. Günter, D.W. Pohl, Laser-induced Dynamic Gratings (Springer, Berlin, 1985), pp. 13–21 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nataraja Sekhar Yadavalli
    • 1
  • Marina Saphiannikova
    • 2
  • Nino Lomadze
    • 1
  • Leonid M. Goldenberg
    • 3
  • Svetlana Santer
    • 1
  1. 1.Department of Experimental Physics, Institute for Physics and AstronomyUniversity of PotsdamPotsdamGermany
  2. 2.Leibniz Institute of Polymer Research DresdenDresdenGermany
  3. 3.University of Applied Sciences WildauWildauGermany

Personalised recommendations