Skip to main content
Log in

Thermal kinetics and short range order parameters of Se80X20 (X = Te, Sb) binary glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bulk Se80Te20 and Se80Sb20 glasses were prepared using the melt–quench technique. Differential scanning calorimetry (DSC) curves measured at different heating rates (5 K/min≤α≤50 K/min) and X-ray diffraction (XRD) are used to characterize the as-quenched specimens. Based on the obtained results, the activation energy of glass transition and the activation energy of crystallization (E g, E c) of the Se80Te20 glass are (137.5, 105.1 kJ/mol) higher than the corresponding values of the Se80Sb20 glass (106.8, 71.2 kJ/mol). An integer n value (n=2) of the Se80Te20 glass indicates that only one crystallization mechanism is occurring while a non-integer exponent (n=1.79) in the Se80Sb20 glass means that two mechanisms are working simultaneously during the amorphous–crystalline transformations. The total structure factor, S(K), indicates the presence of the short-range order (SRO) and the absence of the medium-range order (MRO) inside the as-quenched alloys. In an opposite way to the activation energies, the values of the first peak position and the total coordination number (r 1, η 1), obtained from a Gaussian fit of the radial distribution function, of the Se80Te20 glass are (2.42 nm, 1.99 atom) lower than the corresponding values (2.55 nm, 2.36 atom) of the Se80Sb20 specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Afify, J. Non-Cryst. Solids 142, 247 (1992)

    Article  ADS  Google Scholar 

  2. H.G. Kissinger, Anal. Chem. 29, 1702 (1957)

    Article  Google Scholar 

  3. H. Yinnon, D.R. Uhlmann, J. Non-Cryst. Solids 54, 253 (1983)

    Article  ADS  Google Scholar 

  4. M.J. Strink, A.M. Zahra, Thermochim. Acta 298, 179 (1997)

    Article  Google Scholar 

  5. A.H. Moharram, A.A. Abu-Shely, M. Abu El-Oyoun, A.S. Soltan, Physica B 324, 344 (2002)

    Article  ADS  Google Scholar 

  6. R.M. Mehra, G. Kaur, P.C. Mathur, J. Mater. Sci. 26, 3433 (1991)

    Article  ADS  Google Scholar 

  7. F. Inam, M.T. Shatnawi, D. Tafen, S.J.L. Billinge, P. Chen, D.A. Drabold, J. Phys. Condens. Matter 19, 455206 (2007)

    Article  ADS  Google Scholar 

  8. D. Sharma, S. Sampath, N.P. Lalla, A.M. Awasthi, Physica B 357, 290 (2005)

    Article  ADS  Google Scholar 

  9. Y. Wang, E. Ohata, S. Hosokawa, M. Sakurai, E. Matsubara, J. Non-Cryst. Solids 337, 54 (2004)

    Article  ADS  Google Scholar 

  10. P. Biswas, D.N. Tafen, D.A. Drabold, Phys. Rev. B 71, 54204 (2005)

    Article  ADS  Google Scholar 

  11. N.R. Rao, P.S.R. Krishna, S. Basu, B.A. Dasannacharya, K.S. Sangunni, E.S.R. Gopal, J. Non-Cryst. Solids 240, 221 (1998)

    Article  ADS  Google Scholar 

  12. K.D. Machado, J.C. de Lima, C.E.M. Campos, A.A.M. Gasperini, S.M. de Souza, C.E. Maurmann, T.A. Grandi, P.S. Pizani, Solid State Commun. 133, 411 (2005)

    Article  ADS  Google Scholar 

  13. M. Lasocka, Mater. Sci. 23, 173 (1976)

    Google Scholar 

  14. N. Mehta, R.K. Shukla, A. Kumar, Chalcogenide Lett. 1, 131 (2004)

    Google Scholar 

  15. G. Ruitenberg, Thermochim. Acta 404, 207 (2003)

    Article  Google Scholar 

  16. C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, J. Phys. Chem. 78, 2673 (1974)

    Article  Google Scholar 

  17. W.A. Johnson, R.F. Mehl, Trans. Am. Inst. Min. Metall. Pet. Eng. Inc. 135, 416 (1939)

    Google Scholar 

  18. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  ADS  Google Scholar 

  19. M. Avrami, J. Chem. Phys. 8, 212 (1940)

    Article  ADS  Google Scholar 

  20. M. Avrami, J. Chem. Phys. 9, 177 (1941)

    Article  ADS  Google Scholar 

  21. N. Afify, J. Phys. Chem. Solids 69, 1691 (2008)

    Article  ADS  Google Scholar 

  22. N. Afify, J. Non-Cryst. Solids 126, 130 (1990)

    Article  ADS  Google Scholar 

  23. N. Afify, J. Non-Cryst. Solids 136, 67 (1991)

    Article  ADS  Google Scholar 

  24. N. Mehta, V.S. Kushwaha, A. Kumar, Indian J. Eng. Mater. Sci. 12, 571 (2005)

    Google Scholar 

  25. R. Svoboda, M. Krbal, J. Málek, J. Non-Cryst. Solids 357, 3123 (2011)

    Article  ADS  Google Scholar 

  26. K. Matusita, T. Komatsu, R. Yokota, J. Mater. Sci. 19, 291 (1984)

    Article  ADS  Google Scholar 

  27. B.S. Patia, N. Thakur, S.K. Tripathi, Thermochim. Acta 513, 1 (2011)

    Article  Google Scholar 

  28. A.H. Moharram, A.M. Abdel-Basit, Physica B 358, 279 (2005)

    Article  ADS  Google Scholar 

  29. T.E. Faber, J.M. Ziman, Philos. Mag. 11, 153 (1965)

    Article  ADS  Google Scholar 

  30. O. Oemura, Y. Sagara, T. Satow, Phys. Status Solidi A 26, 99 (1974)

    Article  ADS  Google Scholar 

  31. N. Afify, A. Gaber, I. Abdalla, H. Talaat, Physica B 229, 167 (1997)

    Article  ADS  Google Scholar 

  32. T. Petkova, M. Mitkova, M. Vlček, S. Vassilev, J. Non-Cryst. Solids 326–327, 125 (2003)

    Article  Google Scholar 

  33. N.E. Cusack, The Physics of Structurally Disordered Matter (IOP, Bristol, 1987)

    Google Scholar 

  34. A. Szczygielska, A. Burian, J.C. Dore, V. Honkimäki, S. Duber, J. Alloys Compd. 362, 307 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Moharram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moharram, A.H., Abu El-Oyoun, M. & Abdel-Baset, A.M. Thermal kinetics and short range order parameters of Se80X20 (X = Te, Sb) binary glasses. Appl. Phys. A 115, 1025–1032 (2014). https://doi.org/10.1007/s00339-013-7936-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7936-4

Keywords

Navigation