Skip to main content
Log in

Large-scale fabrication of polymer/Ag core–shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrate a highly sensitive surface-enhanced Raman scattering (SERS) substrate, which consists of Ag nanoparticles (NPs) assembled on the surface of a nanopatterned polymer film. The fabrication route of a polymer/Ag core–shell nanorod (PACSN) array employed a direct nanoimprint technique to create a high-resolution polymer nanorod array. The obtained nanopatterned polymer film was subjected to electroless deposition to form a sea-cucumber-like Ag shell over the surface of the polymer nanorod. The morphology and structures of PACSNs were analyzed by using scanning electron microscopy and X-ray diffraction. The as-synthesized PACSNs exhibited a remarkable SERS activity and Raman signal reproducibility to rhodamine 6G, and a concentration down to 10−12 M can be identified. The effect of electroless deposition time of Ag NPs onto the polymer nanorod surface was investigated. It was found that the electroless deposition time played an important role in SERS activity. Our results revealed that the combination of direct nanoimprint and electroless deposition provided a convenient and cost-effective way for large-scale fabrication of reliable SERS substrates without the requirement of expensive instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.Y. Liang, Z.P. Li, W.Z. Wang, Y.S. Wu, H.X. Xu, Adv. Mater. 21, 4614 (2009)

    Article  Google Scholar 

  2. K. Hoflich, M. Becker, G. Leuchs, S. Christiansen, Nanotechnology 23, 185303 (2012)

    Article  ADS  Google Scholar 

  3. H. Ko, S. Singamaneni, V.V. Tsukruk, Small 4, 1576 (2008)

    Article  Google Scholar 

  4. C.Y. Deng, W.Y. Ma, J.L. Sun, J. Nanomater. 2012, 1 (2012)

    Google Scholar 

  5. M.S. Goh, Y.H. Lee, S. Pedireddy, I.Y. Phang, W.W. Tjiu, J.M.R. Tan, X.Y. Ling, Langmuir 28, 14441 (2012)

    Article  Google Scholar 

  6. W.C. Lin, S.H. Huang, C.L. Chen, C.C. Chen, D. Tsai, H.P. Chiang, Appl. Phys. A, Mater. Sci. Process. 101, 185 (2010)

    Article  ADS  Google Scholar 

  7. M.V. Canamares, J.V. Garcia-Ramos, J.D. Gomez-Varga, C. Domingo, S. Sanchez-Cortes, Langmuir 21, 8546 (2005)

    Article  Google Scholar 

  8. Y. Hou, J. Xu, X. Zhang, D. Yu, Nanotechnology 21, 195203 (2010)

    Article  ADS  Google Scholar 

  9. D.A. Genov, A.K. Sarychev, V.M. Shalaev, A. Wei, Nano Lett. 4, 153 (2004)

    Article  ADS  Google Scholar 

  10. F.J. Bezares, J.D. Caldwell, O. Glembocki, R.W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N.D. Bassim, C. Hosten, Plasmonics 7, 143 (2012)

    Article  Google Scholar 

  11. A. Zenidaka, Y. Tanaka, T. Miyanishi, M. Terakawa, M. Obara, Appl. Phys. A, Mater. Sci. Process. 103, 225 (2011)

    Article  ADS  Google Scholar 

  12. H.Y. Wu, C.J. Choi, B.T. Cunningham, Small 8, 2878 (2012)

    Article  Google Scholar 

  13. J.M. Oran, R.J. Hinde, N. Abu Hatab, S.T. Retterer, M.J. Sepaniak, J. Raman Spectrosc. 39, 1811 (2008)

    Article  ADS  Google Scholar 

  14. J.D. Caldwell, O.J. Glembocki, F.J. Bezares, M.I. Kariniemi, J.T. Niinisto, T.T. Hatanpaa, R.W. Rendell, M. Ukaegbu, M.K. Ritala, S.M. Prokes, C.M. Hosten, M.A. Leskela, R. Kasica, Opt. Express 19, 26056 (2011)

    Article  ADS  Google Scholar 

  15. C.J. Choi, Z. Xu, H.Y. Wu, G.L. Liu, B.T. Cunningham, Nanotechnology 21, 415301 (2010)

    Article  Google Scholar 

  16. X. Wang, L.E. Ocola, R.S. Divan, A.V. Sumant, Nanotechnology 23, 075301 (2012)

    Article  ADS  Google Scholar 

  17. C. Helgert, K. Dietrich, D. Lehr, T. Kasebier, T. Pertsch, E.B. Kley, Microelectron. Eng. 97, 181 (2012)

    Article  Google Scholar 

  18. S.Y. Chou, P.R. Krauss, W. Zhang, L.J. Guo, L. Zhuang, J. Vac. Sci. Technol. B 15, 2897 (1997)

    Article  Google Scholar 

  19. W. Wu, M. Hu, F.S. Ou, Z. Li, R.S. Williams, Nanotechnology 21, 255502 (2010)

    Article  ADS  Google Scholar 

  20. Y.H. Ho, C.C. Liu, S.W. Liu, H. Liang, C.W. Chu, P.K. Wei, Opt. Express 19, A295 (2011)

    Article  ADS  Google Scholar 

  21. C.J. Ting, F.Y. Chang, C.F. Chen, C.P. Chou, J. Micromech. Microeng. 18, 075001 (2008)

    Article  ADS  Google Scholar 

  22. T. Yanagishita, K. Nishio, H. Masuda, Appl. Phys. Express 2, 022001 (2009)

    Article  ADS  Google Scholar 

  23. S.H. Ahn, L.J. Guo, Nano Lett. 9, 4392 (2009)

    Article  ADS  Google Scholar 

  24. X.X. Fu, X.N. Kang, B. Zhang, C. Xiong, X.Z. Jiang, D.S. Xu, W.M. Du, G.Y. Zhang, J. Mater. Chem. 21, 9576 (2011)

    Article  Google Scholar 

  25. L.F. Zhang, X. Gong, Y. Bao, Y. Zhao, M. Xu, C.Y. Jiang, H. Fong, Langmuir 28, 14433 (2012)

    Article  Google Scholar 

  26. W. Lin, Appl. Phys. A, Mater. Sci. Process. 102, 121 (2011)

    Article  ADS  Google Scholar 

  27. S. Krishnamoorthy, S. Krishnan, P. Thoniyot, H.Y. Low, ACS Appl. Mater. Interfaces 3, 1033 (2011)

    Article  Google Scholar 

  28. J.Y. Yang, H.W. Cheng, Y. Chen, Y.M. Li, C.H. Lin, K.L. Lu, J. Nanosci. Nanotechnol. 11, 2012 (2011)

    Article  Google Scholar 

  29. M. Beck, M. Graczyk, I. Maximov, E.L. Sarwe, T.G.I. Ling, M. Keil, L. Montelius, Microelectron. Eng. 61–62, 441 (2002)

    Article  Google Scholar 

  30. L. Wang, W. Liu, Y.W. Zhang, F. Qiu, N. Zhou, D.L. Wang, Z.M. Xu, Y.L. Zhao, Y.L. Yu, Microelectron. Eng. 93, 43 (2012)

    Article  Google Scholar 

  31. S. Han, Y. Lee, H. Kim, G.H. Kim, J. Lee, J.H. Yoon, G. Kim, Surf. Coat. Technol. 93, 261 (1997)

    Article  Google Scholar 

  32. J.N. Lai, B. Sunderland, J.M. Xue, S. Yan, W.J. Zhao, M. Folkard, B.D. Michael, Y.G. Wang, Appl. Surf. Sci. 252, 3375 (2006)

    Article  ADS  Google Scholar 

  33. J.S. Yang, J. Pan, Acta Mater. 60, 4753 (2012)

    Article  MathSciNet  Google Scholar 

  34. L.Q. Lu, Y. Zheng, W.G. Qu, H.Q. Yu, A.W. Xu, J. Mater. Chem. 22, 20986 (2012)

    Article  Google Scholar 

  35. C.H. Zhu, G.W. Meng, Q. Huang, Z.L. Huang, J. Hazard. Mater. 211, 389 (2012)

    Article  Google Scholar 

  36. S.M. Wells, S.D. Retterer, J.M. Oran, M.J. Sepaniak, ACS Nano 3, 3845 (2009)

    Article  Google Scholar 

  37. J. Tang, F.S. Ou, H.P. Kuo, M. Hu, W.F. Stickle, Z.Y. Li, R.S. Williams, Appl. Phys. A, Mater. Sci. Process. 96, 793 (2009)

    Article  ADS  Google Scholar 

  38. Z.Q. Tian, B. Ren, D.Y. Wu, J. Phys. Chem. B 106, 9463 (2002)

    Article  Google Scholar 

  39. P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, P. Morgen, J. Phys. Chem. C 113, 14165 (2009)

    Article  Google Scholar 

  40. M. Rycenga, P.H.C. Camargo, W.Y. Li, C.H. Moran, Y.N. Xia, J. Phys. Chem. Lett. 1, 696 (2010)

    Article  Google Scholar 

  41. D.M. Kuncicky, B.G. Prevo, O.D. Velev, J. Mater. Chem. 16, 1207 (2006)

    Article  Google Scholar 

  42. H. Ko, V.V. Tsukruk, Small 4, 1980 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61076042, 60607006, and 2011YQ16000205) and the National Key Technology R&D Program of China (Grant No. 2009BAH49B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimou Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Xu, Z., Sun, T. et al. Large-scale fabrication of polymer/Ag core–shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition. Appl. Phys. A 115, 979–984 (2014). https://doi.org/10.1007/s00339-013-7917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7917-7

Keywords

Navigation