Applied Physics A

, Volume 113, Issue 2, pp 291–296 | Cite as

Production of nanostructures on bulk metal samples by laser ablation for fabrication of low-reflective surfaces

  • Béla Hopp
  • Tomi Smausz
  • Tamás Csizmadia
  • Csaba Vass
  • Csaba Tápai
  • Bálint Kiss
  • Martin Ehrhardt
  • Pierre Lorenz
  • Klaus Zimmer
Rapid communication

Abstract

Nanostructure formation on bulk noble metals (copper, gold and silver) by a femtosecond laser was studied aiming at the production of low-reflectivity surfaces. The target surface was irradiated with the beam of a 775 nm wavelength and 150 fs pulse duration Ti:sapphire laser. The fluence was in the 16–2000 mJ/cm2 range, while the average pulse number was varied between 10 and 1000 depending on the scanning speed of the sample stage. The reflectivity of the treated surfaces was measured with a visible–near-infrared microspectrometer in the 450–800 nm range, while the morphology was studied with a scanning electron microscope. A strong correlation was found between the decreasing reflectivity and the nanostructure formation on the irradiated surface; however, the morphology of silver significantly differed from those of copper and gold. For the two latter metals a dense coral-like structure was found probably as a result of cluster condensation in the ablation plume followed by diffusion-limited aggregation. In the case of silver the surface was covered by nanodroplets, which formation was probably influenced by the ‘spitting’ caused by ambient oxygen absorption in the molten silver followed by its fast release during the resolidification.

References

  1. 1.
    S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A 61, 33 (1995) ADSCrossRefGoogle Scholar
  2. 2.
    C. Momma, S. Nolte, B.N. Chichkov, F.V. Alvensleben, A. Tünnermann, Appl. Surf. Sci. 109–110, 15 (1997) CrossRefGoogle Scholar
  3. 3.
    J. Békési, J.-H. Klein-Wiele, P. Simon, Appl. Phys. A 76, 355 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    N. Singh, D.R. Alexander, J. Schiffern, D. Doerr, J. Laser Appl. 18(3), 242 (2006) CrossRefGoogle Scholar
  5. 5.
    B.K. Nayak, M.C. Gupta, K.W. Kolasinski, Nanotechnology 18, 195302 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    J. Wang, C. Guo, Appl. Phys. Lett. 87, 251914 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    A.Y. Vorobyev, C. Guo, Adv. Mech. Eng. 2010, 452749 (2010) Google Scholar
  8. 8.
    A.Y. Vorobyev, C. Guo, Opt. Photonics News 19(12), 30 (2008) CrossRefGoogle Scholar
  9. 9.
    A.Y. Vorobyev, C. Guo, Phys. Rev. B 72(19), 195422 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Vorobyev, C. Guo, J. Appl. Phys. 104, 053516 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    T.-F. Yao, P.-H. Wu, T.-M. Wu, C.-W. Cheng, S.-Y. Yang, Microelectron. Eng. 88, 2908 (2011) CrossRefGoogle Scholar
  12. 12.
    R. Torres, V. Vervisch, M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, J. Ferreira, D. Barakel, S. Bastide, F. Torregrosa, H. Etienne, L. Roux, J. Optoelectron. Adv. Mater. 12(3), 621 (2010) Google Scholar
  13. 13.
    A.Y. Vorobyev, C. Guo, Opt. Express 19(5), A1031 (2011) CrossRefGoogle Scholar
  14. 14.
    J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A.V. Gopal, V.A. Trofimov, T.M. Lysak, Appl. Surf. Sci. 258, 7625 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    M.S. Ahsan, F. Ahmed, Y.G. Kim, M.S. Lee, M.B.G. Jun, Appl. Surf. Sci. 257(17), 7771 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    A.Y. Vorobyev, C. Guo, Appl. Phys. A 86, 321 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    A.Y. Vorobyev, C. Guo, J. Appl. Phys. 110, 043102 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    A.Y. Vorobyev, C. Guo, Appl. Phys. A 86, 235 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    K.-E. Peiponent, T. Tsuboi, Opt. Laser Technol. 22(2), 127 (1990) ADSCrossRefGoogle Scholar
  20. 20.
    E.G. Gamaly, Phys. Rep. 508, 91 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    J. Byskov-Nielsen, J.-M. Savolainen, M.S. Christensen, P. Balling, Appl. Phys. A 101, 97 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    M. Hashida, A. Semerok, O. Govert, G. Petite, Y. Izawa, J.F. Wagner, Appl. Surf. Sci. 197–198, 862 (2002) CrossRefGoogle Scholar
  23. 23.
    A.V. Rode, E.G. Gamaly, B. Luther-Davies, Appl. Phys. A 70, 135 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    S. Noël, J. Hermann, T. Itina, Appl. Surf. Sci. 253(15), 6310 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    P. Spiga, J. Hermann, T. Itina, D. Grojo, D. Neamtu, D. Pailharey, W. Marine, AIP Conf. Proc. 799, 197 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    S. Barcikowski, A. Hahn, A.V. Kabashin, B.N. Chichkov, Appl. Phys. A 87, 47 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    M. Biscan, S. Milosevic, Spectrochim. Acta B 68, 34 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    A.A. Morozov, Appl. Phys. A 79, 997 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    L. Égerházi, Zs. Geretovszky, T. Szörényi, Appl. Surf. Sci. 247, 182 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Béla Hopp
    • 1
  • Tomi Smausz
    • 2
  • Tamás Csizmadia
    • 1
  • Csaba Vass
    • 1
  • Csaba Tápai
    • 1
  • Bálint Kiss
    • 1
  • Martin Ehrhardt
    • 3
  • Pierre Lorenz
    • 3
  • Klaus Zimmer
    • 3
  1. 1.Department of Optics and Quantum ElectronicsUniversity of SzegedSzegedHungary
  2. 2.MTA-SZTE Research Group on Photoacoustic SpectroscopyUniversity of SzegedSzeged, Dóm tér 9Hungary
  3. 3.Leibniz Institute of Surface ModificationLeipzigGermany

Personalised recommendations