Skip to main content
Log in

Growth mechanism studies of ZnO nanowire arrays via hydrothermal method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Well-controlled ZnO nanowire arrays have been synthesized using the hydrothermal method, a low temperature and low cost synthesis method. The process consists of two steps: the ZnO buffer layer deposition on the substrate by spin-coating and the growth of the ZnO nanowire array on the seed layer. We demonstrated that the microstructure and the morphology of the ZnO nanowire arrays can be significantly influenced by the main parameters of the hydrothermal method, such as pH value of the aqueous solution, growth time, and solution temperature during the ZnO nanowire growth. Scanning electron microscopy observations showed that the well oriented and homogeneous ZnO nanowire arrays can be obtained with the optimized synthesis parameters. Both x-ray diffraction spectra and high-resolution transmission electron microscopy (HRTEM) observations revealed a preferred orientation of ZnO nanowires toward the c-axis of the hexagonal Wurtzite structure, and HRTEM images also showed an excellent monocrystallinity of the as-grown ZnO nanowires. For a deposition temperature of 90 °C, two growth stages have been identified during the growth process with the rates of 10 and 3 nm/min, respectively, at the beginning and the end of the nanowire growth. The ZnO nanowires obtained with the optimized growth parameters owning a high aspect ratio about 20. We noticed that the starting temperature of seed layer can seriously influence the nanowire growth morphology; two possible growth mechanisms have been proposed for the seed layer dipped in the solution at room temperature and at a high temperature, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.H. Zhao, Z.L. Wang, S.X. Mao, Nano Lett. 4, 587 (2004)

    Article  ADS  Google Scholar 

  2. M.P. Lu, M.Y. Lu, L.J. Chen, Nano Energy 1, 247 (2012)

    Article  Google Scholar 

  3. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004)

    Article  ADS  Google Scholar 

  4. J.X. Wang, X.W.S, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, Nanotechnology 17, 4995 (2006)

    Article  ADS  Google Scholar 

  5. T. Gao, T.H. Wang, Appl. Phys., A 80, 1451 (2005)

    Article  ADS  Google Scholar 

  6. E. Comini, G. Faglia, M. Ferroni, G. Sberveglieri, Appl. Phys., A 88, 45 (2007)

    Article  ADS  Google Scholar 

  7. Y. Lv, L. Guo, H. Xu, X. Chu, Physica E 36, 102 (2007)

    Article  ADS  Google Scholar 

  8. E. Comini, C. Baratto, G. Faglia, M. Ferroni, G. Sberveglieri, J. Phys. D: Appl. Phys. 40, 7255 (2007)

    Article  ADS  Google Scholar 

  9. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)

    Article  ADS  Google Scholar 

  10. J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 053114 (2005)

    Article  ADS  Google Scholar 

  11. Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Adv. Mater. 23, 1679 (2011)

    Article  Google Scholar 

  12. Q. Simon, D. Barreca, D. Bekermann, A. Gasparotto, C. Maccato, E. Comini, V. Gombac, P. Fornasiero, O.I. Lebedev, S. Turner, A. Devi, R.A. Fischer, G. Van Tendeloo, Int. J. Hydrog. Energy 36, 15527 (2011)

    Article  Google Scholar 

  13. P.X. Gao, Z.L. Wang, J. Phys. Chem. B 108, 7534 (2004)

    Article  Google Scholar 

  14. X. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4, 423 (2004)

    Article  ADS  Google Scholar 

  15. P.X. Gao, Z.L. Wang, Appl. Phys. Lett., 2883 (2004)

  16. C.L. Xu, D.H. Qin, H. Li, Y. Guo, T. Xu, H.L. Li, Mater. Lett. 58, 3976 (2004)

    Article  Google Scholar 

  17. A. Umar, B. Karunagaran, E.-K. Suh, Y.B. Hahn, Nanotechnology 17, 4072 (2006)

    Article  ADS  Google Scholar 

  18. X.M. Zhang, M.Y. Lu, Y. Zhang, L.J. Che, Z.L. Wang, Adv. Mater. 21, 2767 (2009)

    Article  Google Scholar 

  19. Y. Sun, M.N.R. Ashfold, Nanotechnology 18, 245701 (2007)

    Article  ADS  Google Scholar 

  20. S.J. Henley, M.N.R. Ashfold, D.P. Nicholls, P. Wheatley, D. Cherns, Appl. Phys. A, Mater. Sci. Process. 79, 1169 (2004)

    Article  ADS  Google Scholar 

  21. A. Rahm, M. Lorenz, T. Nobis, G. Zimmermann, M. Grundmann, B. Fuhrmann, F. Syrowatka, Appl. Phys. A 88, 31 (2007)

    Article  ADS  Google Scholar 

  22. M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Chem. Phys. Lett. 363, 123 (2002)

    Article  ADS  Google Scholar 

  23. Y. Leprince-Wang, A. Yacoubi-Ouslim, G.Y. Wang, Microelectron. J. 36, 625 (2005)

    Article  Google Scholar 

  24. C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora, V. Munoz-Sanjose, Physica E 14, 229 (2002)

    Article  ADS  Google Scholar 

  25. S. Yamabi, H. Imai, J. Mater. Chem. 12, 3773 (2002)

    Article  Google Scholar 

  26. C.H. Bae, S.M. Park, S.E. Ahn, D.J. Oh, G.T. Kim, J.S. Ha, Appl. Surf. Sci. 253, 1758 (2006)

    Article  ADS  Google Scholar 

  27. G. Kenanakis, N. Katsarakis, Appl. Catal. A, Gen. 378, 227 (2010)

    Article  Google Scholar 

  28. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Angew. Chem., Int. Ed. Engl. 42, 3031 (2003)

    Article  Google Scholar 

  29. L. Vayssieres, Adv. Mater. 15, 464 (2003)

    Article  Google Scholar 

  30. J. Wang, L. Gao, Solid State Commun. 132, 269 (2004)

    Article  ADS  Google Scholar 

  31. M. Guo, P. Diao, S. Cai, J. Solid State Chem. 178, 1864 (2005)

    Article  ADS  Google Scholar 

  32. Y. Wang, Y.H. Li, Z.Z. Zhou, X.H. Zu, Y.L. Deng, J. Nanopart. Res. 13, 5193 (2011)

    Article  Google Scholar 

  33. K. Laurent, T. Brouri, M. Capo-Chichi, D.P. Yu, Y. Leprince-Wang, J. Appl. Phys. 110, 094310 (2011)

    Article  ADS  Google Scholar 

  34. D. Vernardou, G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis, N. Kastarakis, Thin Solid Films 515, 8764 (2007)

    Article  ADS  Google Scholar 

  35. J.M. Jang, S.D. Kim, H.M. Choi, J.Y. Kim, W.G. Jung, Mater. Chem. Phys. 113, 389 (2009)

    Article  Google Scholar 

  36. Z. Zhu, D. Yang, H. Liu, Adv. Powder Technol. 22, 493 (2011)

    Article  MATH  Google Scholar 

  37. K. Laurent, B.Q. Wang, D.P. Yu, Y. Leprince-Wang, Thin Solid Films 517, 617 (2008)

    Article  ADS  Google Scholar 

  38. B. Postels, H.-H. Wehmann, A. Bakin, M. Kreye, D. Fuhrmann, J. Blaesing, A. Hangleiter, A. Krost, A. Waag, Nanotechnology 18, 195602 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamin Leprince-Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevalier-César, C., Capochichi-Gnambodoe, M. & Leprince-Wang, Y. Growth mechanism studies of ZnO nanowire arrays via hydrothermal method. Appl. Phys. A 115, 953–960 (2014). https://doi.org/10.1007/s00339-013-7908-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7908-8

Keywords

Navigation