Skip to main content
Log in

Improved performances in low-voltage-driven InGaZnO thin film transistors using a SiO2 buffer layer insertion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we report the device characteristics of indium gallium zinc oxide (IGZO) thin film transistors (TFTs) with high-κ lanthanum aluminate (LaAlO3) based gate insulators. The IGZO TFT with single LaAlO3 gate insulator has an operation voltage as low as 1.5 V but suffers a low on-off-state drive current ratio (I on/I off) of 1×103, a large subthreshold swing (SS) of 0.405 V/dec and a small field effect mobility (μ FE) of 0.84 cm2/V sec. Inserting a SiO2 buffer layer between IGZO active channel layer and LaAlO3 gate insulator results in a reduced effective dielectric constant but with significant improved characteristics including a high I on/I off of 6.2×104, a small SS of 0.113 V/dec and a large μ FE of 5.2 cm2/V sec. Such good performances can be attributed to the lowered gate leakage and reduced interface trap issue owing to the smooth SiO2 buffer layer insertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.L. Hoffman, B.J. Norris, J.F. Wager, Appl. Phys. Lett. 82, 733 (2003)

    Article  ADS  Google Scholar 

  2. B. Yaglioglu, H.Y. Yeom, R. Beresford, D.C. Paine, Appl. Phys. Lett. 89, 062103 (2006)

    Article  ADS  Google Scholar 

  3. N.L. Dehuff, E.S. Kettenring, D. Hong, H.Q. Chiang, J.F. Wager, R.L. Hoffman, C.H. Park, D.A. Keszler, J. Appl. Phys. 97, 064505 (2005)

    Article  ADS  Google Scholar 

  4. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)

    Article  ADS  Google Scholar 

  5. E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24, 2945 (2012)

    Article  Google Scholar 

  6. J.C. Park, H.N. Lee, IEEE Electron Device Lett. 33, 818 (2012)

    Article  ADS  Google Scholar 

  7. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Appl. Phys. Lett. 89, 112123 (2006)

    Article  ADS  Google Scholar 

  8. S.Y. Huang, T.C. Chang, M.C. Chen, S.W. Tsao, S.C. Chen, C.T. Tsai, H.P. Lo, Solid-State Electron. 61, 96 (2011)

    Article  ADS  Google Scholar 

  9. S.Y. Lee, D.H. Kim, E. Chong, Y.W. Jeon, D.H. Kim, Appl. Phys. Lett. 98, 122105 (2011)

    Article  ADS  Google Scholar 

  10. J.H. Na, M. Kitamura, Y. Arakawa, Appl. Phys. Lett. 93, 063501 (2008)

    Article  ADS  Google Scholar 

  11. H.H. Hsu, C.Y. Chang, C.H. Cheng, IEEE Electron Device Lett. 34, 768 (2013)

    Article  ADS  Google Scholar 

  12. F. Zhou, H.P. Lin, L. Zhang, J. Li, X.W. Zhang, D.B. Yu, X.Y. Jiang, Z.L. Zhang, Curr. Appl. Phys. 12, 228 (2012)

    Article  ADS  Google Scholar 

  13. Y.J. Cho, J.H. Shin, S.M. Bobade, Y.B. Kim, D.K. Choi, Thin Solid Films 517, 4115 (2009)

    Article  ADS  Google Scholar 

  14. H.H. Hsu, C.Y. Chang, C.H. Cheng, Appl. Phys. A 112, 817 (2013)

    Article  ADS  Google Scholar 

  15. C.W. Chen, T.C. Chang, P.T. Liu, H.Y. Lu, K.C. Wang, C.S. Huang, C.C. Ling, T.Y. Tseng, IEEE Electron Device Lett. 26, 731 (2005)

    Article  ADS  Google Scholar 

  16. K.M. Chang, W.C. Yang, C.P. Tsai, IEEE Electron Device Lett. 24, 512 (2003)

    Article  ADS  Google Scholar 

  17. B.F. Hung, K.C. Chiang, C.C. Huang, A. Chin, S.P. McAlister, IEEE Electron Device Lett. 26, 384 (2005)

    Article  ADS  Google Scholar 

  18. M.F. Chang, P.T. Lee, S.P. McAlister, A. Chin, IEEE Electron Device Lett. 29, 215 (2008)

    Article  ADS  Google Scholar 

  19. M.F. Chang, P.T. Lee, S.P. McAlister, A. Chin, IEEE Electron Device Lett. 30, 133 (2009)

    Article  ADS  Google Scholar 

  20. M. Kitamura, Y. Arakawa, Appl. Phys. Lett. 89, 223525 (2006)

    Article  ADS  Google Scholar 

  21. J.H. Na, M. Kitamura, D. Lee, Y. Arakawa, Appl. Phys. Lett. 90, 163514 (2007)

    Article  ADS  Google Scholar 

  22. I.Y.K. Chang, S.W. You, P.C. Juan, M.T. Wang, J.Y.M. Lee, IEEE Electron Device Lett. 30, 161 (2009)

    Article  ADS  Google Scholar 

  23. G. Wang, D. Moses, A.J. Heeger, H.M. Zhang, M. Narasimhan, R.E. Demaray, J. Appl. Phys. 95, 316 (2004)

    Article  ADS  Google Scholar 

  24. H. Cho, E.A. Douglas, B.P. Gila, V. Craciun, E.S. Lambers, F. Ren, S.J. Pearton, Appl. Phys. Lett. 100, 012105 (2012)

    Article  ADS  Google Scholar 

  25. L.F. Edge, D.G. Schlom, S.A. Chambers, E. Cicerrella, J.L. Freeouf, B. Hollander, J. Schubert, Appl. Phys. Lett. 84, 726 (2004)

    Article  ADS  Google Scholar 

  26. J. Robertson, Rep. Prog. Phys. 69, 327 (2006)

    Article  ADS  Google Scholar 

  27. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New Jersey, 2007), p. 308

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. A. Chin from National Chiao Tung University and Dr. C.H. Cheng from National Taiwan Normal University for their support and technical help in experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. W. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Z.W., Chen, Y.C. Improved performances in low-voltage-driven InGaZnO thin film transistors using a SiO2 buffer layer insertion. Appl. Phys. A 115, 937–941 (2014). https://doi.org/10.1007/s00339-013-7900-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7900-3

Keywords

Navigation