Skip to main content
Log in

Raman mapping of laser-induced changes and ablation of InAs nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Indium arsenic (InAs) nanowires were irradiated with a focused laser beam, followed by in situ Raman spectroscopy mapping and scanning electron microscopy imaging to investigate the changes of the nanowires due to laser irradiation. It was found that laser irradiation with the power intensity above a certain threshold causes arsenic (As) atoms to disintegrate from InAs and accumulate on the surface of the nanowire; the accumulated As atoms evaporate under the continued laser irradiation. This process reduces the As content in the nanowire. The reduction of As content, in turn, lowers the melting temperature of the nanowire locally and facilitates laser ablation, which eventually fractures the nanowire. The laser irradiation induced changes of the InAs nanowires are attributed to the local temperature rises due to the irradiation, as confirmed by the Raman peak shifts. The results from this work show that in situ Raman spectroscopy mapping can provide detailed information about the entire process of laser-induced change and ablation of InAs nanowires and has the potential to become a powerful tool for the characterization of laser modification of nanowires and other nanometer-sized objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.M. Morales, C.M. Lieber, Science 279, 208 (1998)

    Article  ADS  Google Scholar 

  2. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, J. Opt. Soc. Am. B 14, 2716 (1997)

    Article  ADS  Google Scholar 

  3. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, C. Zhou, Adv. Mater. 15, 1754 (2003)

    Article  Google Scholar 

  4. V. Svrcek, D. Mariotti, M. Kondo, Opt. Express 17, 520 (2009)

    Article  ADS  Google Scholar 

  5. S. Machmudah, Wahyudiono, Y. Kuwahara, M. Sasaki, M. Gotoa, J. Supercrit. Fluids 60, 63 (2011)

    Article  Google Scholar 

  6. W.K. Maser, E. Munoz, A.M. Benito, M.T. Martínez, G.F. de la Fuente, Y. Maniette, E. Anglaret, J.L. Sauvajol, Chem. Phys. Lett. 292, 587 (1998)

    Article  ADS  Google Scholar 

  7. S. Peter, Laser Processing of Materials: Fundamentals, Applications and Developments (Springer, Berlin, 2010)

    Google Scholar 

  8. W. Shi, Y. Zheng, H. Peng, N. Wang, C. Lee, S. Lee, J. Am. Ceram. Soc. 83, 3228 (2000)

    Article  Google Scholar 

  9. A.P. Bolshakov, S.A. Uglov, A.V. Saveliev, V.I. Konov, A.A. Gorbunov, W. Pompe, A. Graff, Diam. Relat. Mater. 11, 927 (2002)

    Article  ADS  Google Scholar 

  10. W. Schulz, U. Eppelt, R. Poprawe, J. Laser Appl. 25, 012006 (2013)

    Article  ADS  Google Scholar 

  11. F. Kokai, K. Uchiyama, T. Shimazu, A. Koshio, Appl. Phys. A Mater. Sci. Process. 101, 497 (2010)

    Article  ADS  Google Scholar 

  12. T. Zhai, X. Zhang, Z. Pang, F. Zhou, Adv. Mater. 23, 1860 (2011)

    Article  Google Scholar 

  13. P.M. Ossi, F. Neri, N. Santo, S. Trusso, Appl. Phys. A Mater. Sci. Process. 104, 829 (2011)

    Article  ADS  Google Scholar 

  14. S. Yazji, I. Zardo, M. Soini, P. Postorino, A. Fontcuberta i Morral, G. Abstreiter, Nanotechnology 22, 325701 (2011)

    Article  Google Scholar 

  15. M. Soini, I. Zardo, E. Uccelli, S. Funk, G. Koblmüller, A. Fontcuberta i Morral, G. Abstreiter, Appl. Phys. Lett. 97, 263107 (2010)

    Article  ADS  Google Scholar 

  16. A. Rogalski, Prog. Quantum Electron. 27, 59 (2003)

    Article  ADS  Google Scholar 

  17. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2007)

    Google Scholar 

  18. H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P.W. Leu, K. Ganapathi, E. Plis, H.S. Kim, S.Y. Chen, M. Madsen, A.C. Ford, Y.L. Chueh, S. Krishna, S. Salahuddin, A. Javey, Nature 468, 286 (2010)

    Article  ADS  Google Scholar 

  19. S.A. Dayeh, Semicond. Sci. Technol. 25, 024004 (2010)

    Article  ADS  Google Scholar 

  20. I.E. Wachs, Top. Catal. 8, 57 (1999)

    Article  Google Scholar 

  21. A.C. Gandhi, H. Hung, P. Shih, C. Cheng, Y. Ma, S. Wu, Nanoscale Res. Lett. 5, 581 (2010)

    Article  ADS  Google Scholar 

  22. G. Mestl, J. Mol. Catal. A, Chem. 158, 45 (2000)

    Article  Google Scholar 

  23. M.A. Banares, Catal. Today 100, 71 (2005)

    Article  Google Scholar 

  24. I. Zardo, S. Conesa-Boj, F. Peiro, J.R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, A. Fontcuberta i Morral, Phys. Rev. B 80, 245324 (2009)

    Article  ADS  Google Scholar 

  25. C. Thelandera, M.T. Björka, M.W. Larssonb, A.E. Hansena, L.R. Wallenberg, L. Samuelson, Solid State Commun. 131, 573 (2006)

    Article  ADS  Google Scholar 

  26. FEI Company, FEI Sirion 200, Europe NanoPort, Achtseweg Noord 5, Bldg 5651 GG Eindhoven, The Netherlands

  27. Tokyo Instruments Inc., Nishi-Kasai, Edogawa-ku, Tokyo, Japan

  28. A.E. Siegman, Lasers (Oxford University Press, Oxford, 1986)

    Google Scholar 

  29. N.G. Hörmann, I. Zardo, S. Hertenberger, S. Funk, S. Bolte, M. Döblinger, G. Koblmüller, G. Abstreiter, Phys. Rev. B 84, 155301 (2011)

    Article  ADS  Google Scholar 

  30. R. Carles, N. Saint-Cricq, J.B. Renucci, M.A. Renucci, A. Zwick, Phys. Rev. B 22, 4804 (1980)

    Article  ADS  Google Scholar 

  31. D. Spirkoska, G. Abstreiter, A. Fontcuberta i Morral, Nanotechnology 19, 435704 (2008)

    Article  ADS  Google Scholar 

  32. R. Gupta, Q. Xiong, G.D. Mahan, P.C. Eklund, Nano Lett. 3, 12 (2003)

    ADS  Google Scholar 

  33. J. He, P. Chen, W. Lu, N. Dai, D. Zhu, J. Appl. Phys. 111, 094316 (2012)

    Article  ADS  Google Scholar 

  34. D.E. Aspnes, A.A. Studna, Phys. Rev. B 27, 985 (1983)

    Article  ADS  Google Scholar 

  35. F. Zhou, A.L. Moore, J. Bolinsson, A. Persson, L. Fröberg, M.T. Pettes, H. Kong, L. Rabenberg, P. Caroff, D.A. Stewart, N. Mingo, K.A. Dick, L. Samuelson, H. Linke, L. Shi, Phys. Rev. B 83, 205413 (2011)

    Article  ADS  Google Scholar 

  36. J.K. Panda, A. Roy, A. Singha, M. Gemmi, D. Ercolani, V. Pellegrini, L. Sorba, Appl. Phys. Lett. 100, 143101 (2012)

    Article  ADS  Google Scholar 

  37. R.N. Zitter, in The Physics of Semimetals and Narrow Gap Semiconductors, ed. by D.L. Carter, R.T. Bates (Pergamon, New York, 1971)

    Google Scholar 

  38. D.H. Laughlin, C.W. Wilmsen, Thin Solid Films 70, 325 (1980)

    Article  ADS  Google Scholar 

  39. R.L. Farrow, R.K. Chang, S. Mroczkowski, Appl. Phys. Lett. 31, 768 (1977)

    Article  ADS  Google Scholar 

  40. G. Hollinger, R. Skheyta-Kabbani, M. Gendry, Phys. Rev. B 49, 11159 (1994)

    Article  ADS  Google Scholar 

  41. B. Reifenberger, M.J. Keck, J. Trivisonno, J. Appl. Phys. 40, 403 (1969)

    Article  Google Scholar 

  42. S.J. Pearton, C.R. Abernathy, F. Ren, Topics in Growth and Device Processing of III–V Semiconductors (World Scientific, Singapore, 1996)

    Google Scholar 

  43. H. Morota, S. Adachi, J. Appl. Phys. 105, 043508 (2009)

    Article  ADS  Google Scholar 

  44. P.K. Kashkaro, V.Y. Timoshenko, N.G. Chechenin, A.N. Obraztsov, Laser Phys. 2, 5 (1992)

    Google Scholar 

  45. R. Tsu, J.E. Baglin, G.J. Lasher, J.C. Tsang, Appl. Phys. Lett. 34, 153 (1979)

    Article  ADS  Google Scholar 

  46. T.E. Haynes, W.K. Chu, T.L. Aselage, S.T. Picraux, J. Appl. Phys. 63, 1168 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Zheng-yu Lu and Jie Wu for experimental help. This work was supported by Chinese Academy of Science International Partnership Program (CAS/SAFEA) and by Creative Research Program and by National Basic Research Program of China (Grant No. 2011CBA0900) and STCSM (Grant No. 09ZR1436 000). D-M Zhu is supported part by the US Army Research Office under the Contract W911NF-10-1-0476, and by a Grant from Agilent Technologies, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Ming Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Chen, P., Lu, W. et al. Raman mapping of laser-induced changes and ablation of InAs nanowires. Appl. Phys. A 115, 885–893 (2014). https://doi.org/10.1007/s00339-013-7884-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7884-z

Keywords

Navigation