Skip to main content
Log in

The effect of quaternary element on the thermodynamic parameters and structure of CuAlMn shape memory alloys

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the Cu-based shape memory alloys were produced by arc melting. We have investigated the effects of the alloying elements on the characteristic transformation temperatures, enthalpy, entropy values, and the structure of Cu–Al–Mn ternary system. The evolution of the transformation temperatures was studied by the differential scanning calorimetry. The characteristic transformation temperatures can be controlled by the variations in the aluminum and manganese content. Additionally, the effect of magnesium and iron on the transformation temperatures and thermodynamic parameters was investigated in the Cu–Al–Mn ternary system. The addition of the magnesium decreases the characteristic transformation temperatures of the Cu–Al–Mn system, but that of the iron increases. The structural changes of the samples were studied by X-ray diffraction measurements and optical microscope observations. Due to the low solubility of the magnesium, the magnesium addition into the Cu–Al–Mn system forms precipitates in the matrix. It is evaluated that the transformation parameters of the CuAlMn shape memory alloys can be controlled by the change of the alloying elements and the weight percentages of alloying elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. I. Ruiz-Larrea, A. López-Echarri, E.H. Bocanegra, M.L. Nó, J.M. San Juan, The specific heat of Cu–Al–Ni shape memory alloys. Mater. Sci. Eng. A 438–440, 779–781 (2006)

    Article  Google Scholar 

  2. A.G. Magdelena, A.T. Adorno, R.A.G. Silva, T.M. Carvalho, Effect of Ag concentration on the thermal behavior of the Cu-10 mass%Al and Cu-11 mass%Al alloys. J. Therm. Anal. Calorim. 92, 47–51 (2009)

    Article  Google Scholar 

  3. C. Aksu Canbay, A. Aydogdu, Thermal analysis of Cu 14.82 wt%Al-0.4 wt%Be shape memory alloy. J. Therm. Anal. Calorim. (2012). doi:10.1007/s10973-012-2792-6

    Google Scholar 

  4. S.M. Van Boheman, J. Sietsma, R. Petrov, M.J. Marie Hermans, I.M. Richardson, Acoustic emission as a probe of the kinetics of the martensitic transformation in a shape memory alloy. Mater. Trans. 47, 607–611 (2006)

    Article  Google Scholar 

  5. F.M. Sanchez-Arevelo, W. Aldama-Reyna, A.G. Lara-Rodriguez, T. Garcia-Fernandez, G. Pulos, M. Trivi, M. Villagram-Muniz, Use of time history speckle pattern and pulsed photoacoustic techniques to detect the self-accommodating transformation in a Cu–Al–Ni shape memory alloy. Mater. Charact. 61, 518–524 (2010)

    Article  Google Scholar 

  6. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn. (Chapman & Hall TJ Press, London, 1992)

    Book  Google Scholar 

  7. O. Adiguzel, Smart materials and influence of atom sizes on martensite microstructures in copper-based shape memory alloys. J. Mater. Process. Technol. 185, 120–124 (2007)

    Article  Google Scholar 

  8. Y. Zheng, C. Li, F. Wan, Y. Long, Cu–Al–Mn alloy with shape memory effect at low temperature. J. Alloys Compd. 441, 317–322 (2007)

    Article  ADS  Google Scholar 

  9. S.K. Vajpai, R.K. Dube, S. Sangal, Microstructure and properties of Cu–Al–Ni shape memory alloy strips prepared via hot densification rolling of argon atomized powder performs. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 529, 378–387 (2011)

    Article  Google Scholar 

  10. A. Cuniberti, R. Romero, M. Stipcich, Stabilization kinetics and defects retained by quenching in 18R Cu–Zn–Al martensite. J. Alloys Compd. 472, 162–165 (2009)

    Article  Google Scholar 

  11. V. Asanovic, K. Delijic, N. Jaukovic, A study of transformations of \(\beta\)-phase in Cu–Zn–Al shape memory alloys. Scr. Mater. 58, 599–601 (2008)

    Article  Google Scholar 

  12. R.C. Mackenzie, Differential Thermal Analysis (Academic Press, London, 1972)

    Google Scholar 

  13. Z. Karagoz, C. Aksu Canbay, Relationship between transformation temperatures and alloying elements in Cu–Al–Ni shape memory alloys. J. Therm. Anal. Calorim. (2013). doi:10.1007/s10973-013-3145-9

    Google Scholar 

  14. U.S. Mallik, V. Sampath, Effect of composition and ageing on damping characteristics of Cu–Al–Mn shape memory alloys. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 478, 48–55 (2008)

    Article  Google Scholar 

  15. A. Mielczarek, N. Kopp, W. Riehemann, Ageing effects after heat treatment in Cu–Al–Mn shape memory alloys. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 521–522, 182–185 (2009)

    Article  Google Scholar 

  16. R.A. Portier, P. Ochin, A. Pasko, G.E. Monastyrsky, A.V. Gilchuk, V.I. Kolomytsev, Y.N. Koval, Spark plasma sintering of Cu–Al–Ni shape memory alloy. J. Alloys Compd. (2012). doi:10.1016/j.jallcom.2012.02.145

    MATH  Google Scholar 

  17. M.O. Prado, P.M. Decarte, F. Lovey, Martensitic transformation in Cu–Al–Mn alloys. Scr. Metall. Mater. 33, 878–883 (1995)

    Article  Google Scholar 

  18. N. Suresh, U. Ramamurty, Aging response and its effect on functional properties of Cu–Al–Ni shape memory alloys. J. Alloys Compd. 449, 113–118 (2008)

    Article  Google Scholar 

  19. G.K. Kannarpady, A. Bhattacharyya, S. Pulnev, I. Vahni, The effect of isothermal mechanical cycling on Cu-13.3 Al-4.0 Ni (wt.%) shape memory alloy single crystal wires. J. Alloys Compd. 425, 112–122 (2006)

    Article  Google Scholar 

  20. J. Rodriguez-Aseguinoloaza, I. Ruiz-Larrea, M.L. Nó, A. López-Echarri, J. San Juan, Temperature memory effect in Cu–Al–Ni shape memory alloys studied by adiabatic calorimetry. Acta Mater. 58, 3711–3722 (2008)

    Article  Google Scholar 

  21. H. Kato, Y. Yasuda, K. Sasaki, Thermodynamic assessment of the stabilization effect in deformed shape memory alloy martensite. Acta Mater. 59, 3955–3964 (2011)

    Article  Google Scholar 

  22. R.J. Salzbrenner, M. Cohen, On the thermodynamics of thermoelastic martensitic transformation. Acta Metall. 27, 739–748 (1979)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by FÜBAP, Project No. FF.12.36.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Aksu Canbay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksu Canbay, C., Karagoz, Z. The effect of quaternary element on the thermodynamic parameters and structure of CuAlMn shape memory alloys. Appl. Phys. A 113, 19–25 (2013). https://doi.org/10.1007/s00339-013-7880-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7880-3

Keywords

Navigation