Skip to main content

Advertisement

Log in

Transport properties of random media composed of core-shell spheres

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

With the energy-density coherent potential approximation method, a series of calculations concerning the contribution from the morphology and dispersion of random media composed of core-shell spheres on the transport properties of random media are conducted in terms of the scattering-cross-section efficiency factor, mean free path, velocity of electromagnetic energy, and diffusion coefficient. It is found that the core layer introduces more complicated resonant modes which lead to diverse possibilities to sharply decrease the transport of light within random media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Sajeev, Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53(22), 2169–2172 (1984)

    Article  Google Scholar 

  2. A.F. Ioffe, A.R. Regel, Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semicond. 4, 237 (1960)

    Google Scholar 

  3. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)

    Google Scholar 

  4. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998)

    Book  Google Scholar 

  5. B.A. van Tiggelen, A. Lagendijk, Rigorous treatment of the speed of diffusing classical waves. Europhys. Lett. 23(5), 311 (1993)

    Article  ADS  Google Scholar 

  6. M. Störzer, C.M. Aegerter, G. Maret, Reduced transport velocity of multiply scattered light due to resonant scattering. Phys. Rev. E 73(6), 065602 (2006)

    Article  ADS  Google Scholar 

  7. R. Sapienza, P.D. García, J. Bertolotti, M.D. Martín, Á. Blanco, L. Viña, C. López, D.S. Wiersma, Observation of resonant behavior in the energy velocity of diffused light. Phys. Rev. Lett. 99(23), 233902 (2007)

    Article  ADS  Google Scholar 

  8. P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, 2nd edn. (Springer, Heidelberger, 2006)

    Google Scholar 

  9. J.H. Page, S.E. Skipetrov, B.A. van Tiggelen, H. Hu, A. Strybulevych, Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945–948 (2008)

    Article  Google Scholar 

  10. A. Mews, A. Eychmueller, M. Giersig, D. Schooss, H. Weller, Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. 98(3), 934–941 (1994)

    Article  Google Scholar 

  11. R. Tweer, Vielfachstreuung von Licht in Systemen dicht gepackter Mie-Streuer: Auf dem Weg zur Anderson-Lokalisierung? Ph.D. thesis, 2002

  12. H. Zhang, H. Zhu, M. Xu, Transport properties of light in a disordered medium composed of two-layered dispersive spheres. Opt. Express 19(4), 2928–2940 (2011)

    Article  ADS  Google Scholar 

  13. R. Lenke, G. Maret, Multiple scattering of light: coherent backscattering and transmission, in Scattering in Polymeric and Colloidal Systems, ed. by W. Brown, K. Mortensen (Gordon & Breach, New York, 2000)

    Google Scholar 

  14. E. Akkermans, P.E. Wolf, R. Maynard, Coherent backscattering of light by disordered media: analysis of the peak line shape. Phys. Rev. Lett. 56(14), 1471–1474 (1986)

    Article  ADS  Google Scholar 

  15. K. Busch, C.M. Soukoulis, Transport properties of random media: a new effective medium theory. Phys. Rev. Lett. 75(19), 3442–3445 (1995)

    Article  ADS  Google Scholar 

  16. D.C. Dube, M.T. Lanagan, J.H. Kim, S.J. Jang, Dielectric measurements on substrate materials at microwave frequencies using a cavity perturbation technique. J. Appl. Phys. 63(7), 2466–2468 (1988)

    Article  ADS  Google Scholar 

  17. S. Richter, M. Steinhart, H. Hofmeister, M. Zacharias, U. Gosele, N. Gaponik, A. Eychmuller, A.L. Rogach, J.H. Wendorff, S.L. Schweizer, A. von Rhein, R.B. Wehrspohn, Quantum dot emitters in two-dimensional photonic crystals of macroporous silicon. Appl. Phys. Lett. 87(14), 142107 (2005)

    Article  ADS  Google Scholar 

  18. K. Busch, C.M. Soukoulis, Transport properties of random media: an energy-density cpa approach. Phys. Rev. B 54(2), 893–899 (1996)

    Article  ADS  Google Scholar 

  19. B.A. van Tiggelen, A. Tip, A. Lagendijk, Dwell times for light and electrons. J. Phys. A, Math. Gen. 26(7), 1731 (1993)

    Article  ADS  Google Scholar 

  20. C.C. Lam, P.T. Leung, K. Young, Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering. J. Opt. Soc. Am. B 9(9), 1585–1592 (1992)

    Article  ADS  Google Scholar 

  21. X. Jing, P. Sheng, M. Zhou, Acoustic and electromagnetic quasimodes in dispersed random media. Phys. Rev. A 46(10), 6513 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No. 2011ZX02402, the National High Technology R&D Program of China (863 Program) under Grant No. 2012AA040406, and the Open Funding provided by State Key Laboratory of Transient Optics and Photonics under Grant No. SKLST201111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Zhang, H., Zhang, X. et al. Transport properties of random media composed of core-shell spheres. Appl. Phys. A 114, 1223–1231 (2014). https://doi.org/10.1007/s00339-013-7862-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7862-5

Keywords

Navigation