Skip to main content
Log in

Novel Cu–Cr alloy matrix CNT composites with enhanced thermal conductivity

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are incorporated into the Cu–Cr matrix to fabricate bulk CNT/Cu–Cr composites by means of a powder metallurgy method, and their thermal conductivity behavior is investigated. It is found that the formation of Cr3C2 interfacial layer improves the interfacial bonding between CNTs and Cu–Cr matrix, producing a reduction of interfacial thermal resistance, and subsequently enhancing the thermal conductivity of the composites. The thermal conductivity of the composites increases by 12 % and 17 % with addition of 5 vol.% and 10 vol.% CNTs, respectively. The experimental results are also theoretically analyzed using an effective medium approximation (EMA) model, and it is found that the EMA model combined with a Debye model can provide a satisfactory agreement to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. E.T. Thostenson, Z. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  2. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)

    Article  Google Scholar 

  3. M. Biercuk, M.C. Llaguno, M. Radosavljevic, J. Hyun, A.T. Johnson, J.E. Fischer, Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80, 2767 (2002)

    Article  ADS  Google Scholar 

  4. R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002)

    Article  ADS  Google Scholar 

  5. E. Neubauer, M. Kitzmantel, M. Hulman, P. Angerer, Potential and challenges of metal–matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos. Sci. Technol. 70, 2228–2236 (2010)

    Article  Google Scholar 

  6. S. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites: a review. Int. Mater. Rev. 55, 41–64 (2010)

    Article  Google Scholar 

  7. K.T. Kim, S.I. Cha, S.H. Hong, Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 430, 27–33 (2006)

    Article  Google Scholar 

  8. W.M. Daoush, B.K. Lim, C.B. Mo, D.H. Nam, S.H. Hong, Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 513, 247–253 (2009)

    Article  Google Scholar 

  9. K. Chu, Q. Wu, C. Jia, X. Liang, J. Nie, W. Tian et al., Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos. Sci. Technol. 70, 298–304 (2010)

    Article  Google Scholar 

  10. K. Chu, H. Guo, C. Jia, F. Yin, X. Zhang, X. Liang et al., Thermal properties of carbon nanotube–copper composites for thermal management applications. Nanoscale Res. Lett. 5, 868–874 (2010)

    Article  ADS  Google Scholar 

  11. S. Cho, K. Kikuchi, A. Kawasaki, On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube–copper matrix composite. Acta Mater. 60, 726–736 (2012)

    Article  Google Scholar 

  12. A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, P. Borah, Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 508, 167–173 (2009)

    Article  Google Scholar 

  13. C. Deng, D. Wang, X. Zhang, A. Li, Processing and properties of carbon nanotubes reinforced aluminum composites. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 444, 138–145 (2007)

    Article  Google Scholar 

  14. C. He, N. Zhao, C. Shi, S. Song, Mechanical properties and microstructures of carbon nanotube–reinforced Al matrix composite fabricated by in situ chemical vapor deposition. J. Alloys Compd. 487, 258–262 (2009)

    Article  Google Scholar 

  15. C. Goh, J. Wei, L. Lee, M. Gupta, Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 423, 153–156 (2006)

    Article  Google Scholar 

  16. S. Cho, K. Kikuchi, T. Miyazaki, K. Takagi, A. Kawasaki, T. Tsukada, Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites. Scr. Mater. 63, 375–378 (2010)

    Article  Google Scholar 

  17. K. Chu, W. Li, C. Jia, F. Tang, Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets. Appl. Phys. Lett. 101, 211903 (2012)

    Article  ADS  Google Scholar 

  18. K. Chu, C. Jia, L. Jiang, W. Li, Improvement of interface and mechanical properties in carbon nanotube reinforced Cu–Cr matrix composites. Mater. Des. 45, 407–411 (2013)

    Article  Google Scholar 

  19. F. Barrere, P. Layrolle, C. Van Blitterswijk, K. De Groot, Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. J. Mater. Sci., Mater. Med. 12, 529–534 (2001)

    Article  Google Scholar 

  20. L. Ci, Z. Ryu, N.Y. Jin-Phillipp, M. Rühle, Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater. 54, 5367–5375 (2006)

    Article  Google Scholar 

  21. C. Kim, B. Lim, B. Kim, U. Shim, S. Oh, B. Sung et al., Strengthening of copper matrix composites by nickel-coated single-walled carbon nanotube reinforcements. Synth. Met. 159, 424–429 (2009)

    Article  Google Scholar 

  22. K.T. Kim, J. Eckert, G. Liu, J.M. Park, B.K. Lim, S.H. Hong, Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing. Scr. Mater. 64, 181–184 (2011)

    Article  Google Scholar 

  23. K. Chu, C. Jia, W. Li, Effective thermal conductivity of graphene-based composites. Appl. Phys. Lett. 101, 121916 (2012)

    Article  ADS  Google Scholar 

  24. C.W. Nan, R. Birringer, D.R. Clarke, H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692 (1997)

    Article  ADS  Google Scholar 

  25. E. Swartz, R. Pohl, Thermal boundary resistance. Rev. Mod. Phys. 61, 605 (1989)

    Article  ADS  Google Scholar 

  26. P. Kim, L. Shi, A. Majumdar, P. McEuen, Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)

    Article  ADS  Google Scholar 

  27. Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36, 914–944 (2011)

    Article  Google Scholar 

  28. K. Chu, C. Jia, H. Guo, W. Li, On the thermal conductivity of Cu–Zr/diamond composites. Mater. Des. 45, 36–42 (2013)

    Article  Google Scholar 

  29. K. Chu, Z. Liu, C. Jia, H. Chen, X. Liang, W. Gao et al., Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles. J. Alloys Compd. 490, 453–458 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, J., Zhang, Cy. & Cheng, X. Novel Cu–Cr alloy matrix CNT composites with enhanced thermal conductivity. Appl. Phys. A 112, 631–636 (2013). https://doi.org/10.1007/s00339-013-7839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7839-4

Keywords

Navigation