Skip to main content
Log in

Silver nanoparticles produced by PLD in vacuum: role of the laser wavelength used

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work we report the results of investigation of silver (Ag) nanoparticles prepared on a silica substrate by laser ablation. Our attention was focused on the mean diameter, size distribution and optical absorption properties of nanoparticles prepared in vacuum by using different laser wavelengths. The fundamental wavelength and the second, third, and fourth harmonics of a nanosecond Nd:YAG laser were used for nanoparticles fabrication. The corresponding values of the laser fluence for each wavelength were: 0.6 J/cm2 at 266 nm, 0.8 J/cm2 at 355 nm, 2.8 J/cm2 at 532 nm, and 2 J/cm2 at 1064 nm. The Ag nanoparticles produced have mean diameters in the range from 2 nm to 12 nm as the nanoparticles’ size decreases with the decrease of the wavelength used. The presence of the Ag nanoparticles was also evidenced by the appearance of a strong optical absorption band in the measured UV-VIS spectra associated with surface plasmon resonance (SPR). A redshift and widening of the absorption peak were observed as the laser wavelength was increased. Some additional investigations were performed in order to clarify the structure of the Ag nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Lu, G.L. Liu, L.P. Lee, Nano Lett. 5, 5 (2005)

    Article  ADS  Google Scholar 

  2. S.K. Mandal, R.K. Roy, A.K. Pal, J. Phys. D, Appl. Phys. 36, 261 (2003)

    Article  ADS  Google Scholar 

  3. R.G. Song, M. Yamaguchi, O. Nishimura, M. Suzuki, Appl. Surf. Sci. 253, 3093 (2007)

    Article  ADS  Google Scholar 

  4. I. Sondi, B. Salopek-Sondi, J. Colloid Interface Sci. 275, 177 (2004)

    Article  Google Scholar 

  5. G.A. Martínez-Castañòn, N. Niño-Martínez, F. Martínez-Gutierrez, G.R. Martínez-Mendoza, F. Ruiz, J. Nanopart. Res. 10, 1343 (2008)

    Article  Google Scholar 

  6. R.M. Tilali, A. Irajizad, S.M. Mahdavi, Appl. Phys. A 84, 215 (2006)

    Article  ADS  Google Scholar 

  7. Y. Hayashi, M. Inoue, H. Takizawa, K. Suganuma, Nanoparticle fabrication: nanopackaging, in Nanotechnologies and Electronics Packaging, ed. by J.E. Morris (Springer, New York, 2009), pp. 109–120

    Google Scholar 

  8. J.C. Alonso, R. Diamant, P. Castillo, M.C. Acosta-García, N. Batina, E. Haro-Poniatowski, Appl. Surf. Sci. 255, 4933 (2009)

    Article  ADS  Google Scholar 

  9. D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Appl. Phys. Lett. 72, 2987 (1998)

    Article  ADS  Google Scholar 

  10. X. Niu, P.T. Murray, A. Sarangan, J. Nanopart. Res. 14, 1017 (2012)

    Article  Google Scholar 

  11. U. Chakravarty, P.A. Naik, C. Mukherjee, S.R. Kumbhare, P.D. Gupta, J. Appl. Phys. 108, 053107 (2010)

    Article  ADS  Google Scholar 

  12. T. Donnelly, B.N. Doggett, J.G. Lunney, Appl. Surf. Sci. 252, 4445 (2006)

    Article  ADS  Google Scholar 

  13. R.A. Ganeev, U. Chakravarty, P.A. Naik, H. Srivastava, C. Mukherjee, M.K. Tiwari, R.V. Nandedkar, P.D. Gupta, Appl. Opt. 46, 1205 (2007)

    Article  ADS  Google Scholar 

  14. P.T. Murray, E. Shin, Mater. Lett. 62, 4336 (2008)

    Article  Google Scholar 

  15. A. Semerok, C. Chaleárd, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, Appl. Surf. Sci. 138–139, 311 (1999)

    Article  Google Scholar 

  16. A.O. Dikovska, I.G. Dimitrov, M.T. Alexandrov, N.N. Nedyalkov, P.A. Atanasov, Proc. SPIE 7751, 775120 (2010)

    Article  Google Scholar 

  17. T. Tsuji, K. Iryo, Y. Nishimura, M. Tsuji, Photochem. Photobiol. Sci. 145, 201 (2001)

    Article  Google Scholar 

  18. T. Tsuji, K. Iryo, N. Watanabe, M. Tsuji, Appl. Surf. Sci. 202, 80 (2002)

    Article  ADS  Google Scholar 

  19. G.V. Samsonov, Handbook of the Physicochemical Properties of the Elements (IFI–Plenum Press, New York, 1968)

    Book  Google Scholar 

  20. C. Noguez, J. Phys. Chem. C 111, 3806 (2007)

    Article  Google Scholar 

  21. P. Weightman, P.T. Andrews, J. Phys. C, Solid State Phys. 13, 3529 (1980)

    Article  ADS  Google Scholar 

  22. L.H. Tjeng, M.B.J. Meinders, J. van Elp, J. Ghijsen, G.A. Sawatzky, R.L. Johnson, Phys. Rev. B 41, 3190 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Bulgarian National Science Fund under Contract No. DO 02-293/08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Dikovska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dikovska, A.O., Alexandrov, M.T., Atanasova, G.B. et al. Silver nanoparticles produced by PLD in vacuum: role of the laser wavelength used. Appl. Phys. A 113, 83–88 (2013). https://doi.org/10.1007/s00339-013-7834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7834-9

Keywords

Navigation