Skip to main content
Log in

Structure and magnetic properties of the Co x Pt100−x nanowire arrays

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Co–Pt alloy nanowires with different components have been successfully fabricated by alternating current (AC) electro-deposition into the nanopores of the anodic aluminum oxide (AAO) template. SEM and TEM images reveal that the nanowires are uniform and parallel to each other. The aspect ratio of nanowires is over 100. XRD and EDS patterns indicate that Co–Pt nanowires are nanocrystalline at room temperature. For the as-prepared samples, the magnetocrystal anisotropy is very small, therefore, Co content and shape anisotropy play a dominant role in contributing to the improvement of coercivity and squareness. Meanwhile, the Co–Pt alloy nanowires transforms from a hard magnetic phase of fcc CoPt to a relatively soft magnetic phase of fcc CoPt3 when the annealing temperature is above 400 °C. The structure and magnetic properties of nanowires after annealing are studied and discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.M. Chen, R.S. Li, H.C. Zeng, Angew. Chem., Int. Ed. Engl. 45, 2713 (2006)

    Article  Google Scholar 

  2. S. Chen, Y. Yang, J. Am. Chem. Soc. 124, 5280 (2002)

    Article  Google Scholar 

  3. S. Zhou, K. Mcllwrath, G. Jackson, J. Am. Chem. Soc. 128, 1780 (2006)

    Article  Google Scholar 

  4. S.J. Park, T.A. Taton, C.A. Mirkin, Science 295, 1503 (2002)

    Article  ADS  Google Scholar 

  5. Y. Xiong, J.M. McLellan, J. Chen, Y. Yin, Z.Y. Li, Y. Xia, J. Am. Chem. Soc. 127, 17118 (2005)

    Article  Google Scholar 

  6. S. Dubois, J.M. Beuken, L. Piraux, J.L. Duvail, A. Fret, J.M. George, J.L. Maurice, J. Magn. Magn. Mater. 165, 30 (1997)

    Article  ADS  Google Scholar 

  7. A. Blondel, J.P. Meier, B. Doudin, Appl. Phys. Lett. 65, 3019 (1994)

    Article  ADS  Google Scholar 

  8. R.J. Tonucci, B.L. Justus, A.J. Campillo, C.E. Ford, Science 258, 783 (1992)

    Article  ADS  Google Scholar 

  9. T.W. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Science 261, 1316 (1993)

    Article  ADS  Google Scholar 

  10. S. Dubois, C. Marchal, J.M. Beuken, L. Piraux, Appl. Phys. Lett. 70, 396 (1997)

    Article  ADS  Google Scholar 

  11. Y.G. Guo, L.J. Wan, C.F. Zhu, D.L. Yang, Chem. Mater. 15, 664 (2003)

    Article  Google Scholar 

  12. C.R. Martin, Science 266, 1961 (1994)

    Article  ADS  Google Scholar 

  13. P.H. Zhou, D.S. Xue, H.Q. Luo, J.L. Yao, H. Shi, Nanotechnology 15, 27 (2004)

    Article  ADS  Google Scholar 

  14. D.J. Sellmyer, M. Zheng, R. Skomski, J. Phys. Condens. Matter 13, R433 (2001)

    Article  ADS  Google Scholar 

  15. N. Yasui, A. Imada, T. Den, Appl. Phys. Lett. 83, 3347 (2003)

    Article  ADS  Google Scholar 

  16. M.R. Visokay, R. Sinclair, Appl. Phys. Lett. 66, 1692 (1995)

    Article  ADS  Google Scholar 

  17. Y. Sui, L. Yue, R. Skomski, X.Z. Li, J. Zhou, D.J. Sellmyer, J. Appl. Phys. 93, 7571 (2003)

    Article  ADS  Google Scholar 

  18. Y. Dahmane, L. Cagnon, J. Voiron, S. Pairis, M. Bacia, L. Ortega, N. Benbrahim, A. Kadri, J. Phys. D 39, 4523 (2006)

    Article  ADS  Google Scholar 

  19. Y.H. Huang, H. Okumura, G.C. Hadjipanayis, D. Weller, J. Appl. Phys. 91, 6869 (2002)

    Article  ADS  Google Scholar 

  20. J.M. Penisson, A. Bourret, P.H. Eurin, Acta Metall. 19, 1195 (1971)

    Article  Google Scholar 

  21. J.R. Choi, S.J. Oh, H. Ju, J. Chen, Nano Lett. 5, 2179 (2005)

    Article  ADS  Google Scholar 

  22. H.M. Chen, C.F. Hsin, P.Y. Chen, R. Liu, J. Am. Chem. Soc. 131, 15794 (2009)

    Article  Google Scholar 

  23. J.H. Lee, J.H. Wu, H.L. Liu, J.U. Cho, M.K. Cho, B.H. An, J.H. Min, S.J. Noh, Y.K. Kim, Angew. Chem., Int. Ed. Engl. 46, 3663 (2007)

    Article  Google Scholar 

  24. K. Skinner, C. Dwyer, S. Washburn, Nano Lett. 6, 2758 (2006)

    Article  ADS  Google Scholar 

  25. T.O. Ely, C. Pan, C. Amiens, B. Chaudret, F. Dassenoy, P. Lecante, M.J. Casanove, A. Mosset, M. Respaud, J.M. Broto, J. Phys. Chem. 104, 695 (2000)

    Article  Google Scholar 

  26. W. Chen, S.L. Tang, M. Lu, Y.W. Du, J. Phys. Condens. Matter 15, 4623 (2003)

    Article  ADS  Google Scholar 

  27. K. Suzuki, J.M. Cadogan, J.W. Cochrance, Scr. Mater. 48, 875 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Science Foundation of China (No. 50902117, No. 50825101, and No. 11104126), and the National Basic Research Program of China (No. 2012CB933103), and Scientific and Technological Innovation Platform of Fujian Province (2006L2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Yue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, X., Zhang, X.X., Zhang, Y. et al. Structure and magnetic properties of the Co x Pt100−x nanowire arrays. Appl. Phys. A 112, 869–875 (2013). https://doi.org/10.1007/s00339-013-7830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7830-0

Keywords

Navigation