Skip to main content

Comparative study of gate oxide in 4H-SiC lateral MOSFETs subjected to post-deposition-annealing in N2O and POCl3


This paper compares the behavior of the gate oxide in 4H-SiC lateral MOSFETs subjected to post-deposition annealing (PDA) in N2O and POCl3. A significantly higher channel mobility was measured in 4H-SiC MOSFETs subjected to PDA in POCl3 (108 cm2 V−1 s−1) with respect to N2O (19 cm2 V−1 s−1), accompanying a reduction of the interface traps density. Hence, a different temperature coefficient of the mobility and of the threshold voltage was observed in the two cases. According to structural analysis, the gate oxide subjected to PDA in POCl3 showed a different surface morphology than that treated in N2O, as a consequence of the strong incorporation of phosphorous inside the SiO2 matrix during annealing. This latter explained the instability of the electrical behavior of MOS capacitors annealed in POCl3.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    F. Roccaforte, F. Giannazzo, F. Iucolano, J. Eriksson, M.H. Weng, V. Raineri, Appl. Surf. Sci. 256, 5727 (2010)

    ADS  Article  Google Scholar 

  2. 2.

    M. Shur, S. Rumyanstev, M. Levinshtein, SiC Materials and Devices, vol. 1 (World Scientific, Singapore, 2006)

    Google Scholar 

  3. 3.

    H. Okumura, Jpn. J. Appl. Phys. 45, 7565 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    B.J. Baliga, Silicon Carbide Power Devices (World Scientific, Singapore, 2005)

    Google Scholar 

  5. 5.

    K. Matocha, Solid-State Electron. 52, 1631 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    J. Millán, IET Circuits Devices Syst. 1, 372 (2007)

    Article  Google Scholar 

  7. 7.

    M.K. Das, Mater. Sci. Forum 457–460, 1275 (2004)

    Article  Google Scholar 

  8. 8.

    S.-H. Ryu, S. Dhar, S. Haney, A. Agarwal, A. Lelis, B. Geil, C. Scozzie, Mater. Sci. Forum 615–617, 743 (2009)

    Article  Google Scholar 

  9. 9.

  10. 10.

    V.V. Afanas’ev, F. Ciobanu, S. Dimitrijev, G. Pensl, A. Stesmans, J. Phys. Condens. Matter 16, S1839–S1856 (2004)

    ADS  Article  Google Scholar 

  11. 11.

    F. Ciobanu, G. Pensl, V.V. Afanas’ev, A. Schöner, Mater. Sci. Forum 483–485, 693 (2005)

    Article  Google Scholar 

  12. 12.

    E. Arnold, D. Alok, IEEE Trans. Electron Devices 48, 1870 (2001)

    ADS  Article  Google Scholar 

  13. 13.

    N.S. Saks, A.K. Agarwal, Appl. Phys. Lett. 77, 3281 (2000)

    ADS  Article  Google Scholar 

  14. 14.

    H. Li, S. Dimitrijev, H.B. Harrison, D. Sweatman, Appl. Phys. Lett. 70, 2028 (1997)

    ADS  Article  Google Scholar 

  15. 15.

    G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, M. Di Ventra, S.T. Pantelides, L.C. Feldman, R.A. Weller, Appl. Phys. Lett. 76, 1713 (2000)

    ADS  Article  Google Scholar 

  16. 16.

    L.A. Lipkin, M.K. Das, J.W. Palmour, Mater. Sci. Forum 389–393, 985 (2002)

    Article  Google Scholar 

  17. 17.

    C.-Y. Lu, J.A. Cooper, T. Tsuji, G. Chung, J.R. Williams, K. McDonald, L.C. Feldman, IEEE Trans. Electron Devices 50, 1582 (2003)

    ADS  Article  Google Scholar 

  18. 18.

    G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, Electron Device Lett. 22, 176 (2001)

    ADS  Article  Google Scholar 

  19. 19.

    D. Okamoto, H. Yano, K. Hirata, T. Hatayama, T. Fuyuki, IEEE Electron Device Lett. 31, 710 (2010)

    ADS  Article  Google Scholar 

  20. 20.

    L.K. Swanson, P. Fiorenza, F. Giannazzo, A. Frazzetto, F. Roccaforte, Appl. Phys. Lett. 101, 193501 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    F. Giannazzo, F. Roccaforte, V. Raineri, Appl. Phys. Lett. 91, 202104 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    A. Frazzetto, F. Giannazzo, R. Lo Nigro, V. Raineri, F. Roccaforte, J. Phys. D, Appl. Phys. 44, 255302 (2011)

    ADS  Article  Google Scholar 

  23. 23.

    D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, Hoboken, 2006)

    Google Scholar 

  24. 24.

    H. Yoshioka, T. Nakamura, T. Kimoto, J. Appl. Phys. 112, 024520 (2012)

    ADS  Article  Google Scholar 

  25. 25.

    A. Pérez-Tomás, P. Brosselard, P. Godignon, J. Millán, N. Mestres, M.R. Jennings, J.A. Covington, P.A. Mawby, J. Appl. Phys. 100, 114508 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    S. Dhar, S. Haney, L. Cheng, S.R. Ryu, A.K. Agarwa, L.C. Yu, K.P. Cheung, J. Appl. Phys. 108, 054509 (2010)

    ADS  Article  Google Scholar 

  27. 27.

    A. Frazzetto, F. Giannazzo, P. Fiorenza, V. Raineri, F. Roccaforte, Appl. Phys. Lett. 99, 072117 (2011)

    Article  Google Scholar 

  28. 28.

    H. Nakagawa, S. Tanaka, I. Suemune, Phys. Rev. Lett. 91, 226107 (2003)

    ADS  Article  Google Scholar 

  29. 29.

    M. Camarda, A. Severino, P. Fiorenza, V. Raineri, S. Scalese, C. Bongiorno, A. La Magna, F. La Via, M. Mauceri, D. Crippa, Mater. Sci. Forum 679–680, 358 (2011)

    Article  Google Scholar 

  30. 30.

    P. Fiorenza, F. Giannazzo, A. Frazzetto, F. Roccaforte, J. Appl. Phys. 112, 084501 (2012)

    ADS  Article  Google Scholar 

  31. 31.

    P. Fiorenza, F. Giannazzo, L.K. Swanson, A. Frazzetto, S. Lorenti, M.S. Alessandrino, F. Roccaforte, Beilstein J. Nanotechnol. 4, 249 (2013)

    Article  Google Scholar 

  32. 32.

    S.M. Sze, VLSI Technology (McGraw-Hill, Singapore, 1988)

    Google Scholar 

  33. 33.

    G.C. Schwartz, K.W. Srikrishnan (eds.), Handbook of Semiconductor Interconnection Technology, 2nd edn. (Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

  34. 34.

    D.L. Griscom, E.J. Friebele, K.J. Long, J.W. Fleming, J. Appl. Phys. 54, 3743 (1983)

    ADS  Article  Google Scholar 

  35. 35.

    E.H. Snow, B.E. Deal, J. Electrochem. Soc. 113, 263 (1966)

    Article  Google Scholar 

  36. 36.

    Y.K. Sharma, A.C. Ahyi, T. Isaacs-Smith, A. Modic, M. Park, Y. Xu, E.L. Garfunkel, S. Dhar, L.C. Feldman, J.R. Williams, IEEE Electron Device Lett. 34, 175 (2013)

    ADS  Article  Google Scholar 

  37. 37.

    R.K. Chanana, J. Appl. Phys. 109, 104508 (2011)

    ADS  Article  Google Scholar 

  38. 38.

    H. Watanabe, T. Kirino, Y. Kagei, J. Harries, A. Yoshigoe, Y. Teraoka, S. Mitani, Y. Nakano, T. Nakamura, T. Hosoi, T. Shimura, Mater. Sci. Forum 679–680, 386 (2011)

    Article  Google Scholar 

Download references


This work was partially funded by the Marie Curie ITN NetFISiC (EC FP7 grant agreement n. 264613), by the LAST POWER project (ENIAC Joint Undertaking grant agreement n. 120218), and by ST Microelectronics – Catania (under the research contract 04.03.2011.002 D.B. Legal Dept. 3774).

Author information



Corresponding author

Correspondence to F. Roccaforte.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fiorenza, P., Swanson, L.K., Vivona, M. et al. Comparative study of gate oxide in 4H-SiC lateral MOSFETs subjected to post-deposition-annealing in N2O and POCl3 . Appl. Phys. A 115, 333–339 (2014).

Download citation


  • Threshold Voltage
  • Gate Oxide
  • POCl3
  • Interface State Density
  • Channel Mobility