Skip to main content
Log in

Comparative study of gate oxide in 4H-SiC lateral MOSFETs subjected to post-deposition-annealing in N2O and POCl3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper compares the behavior of the gate oxide in 4H-SiC lateral MOSFETs subjected to post-deposition annealing (PDA) in N2O and POCl3. A significantly higher channel mobility was measured in 4H-SiC MOSFETs subjected to PDA in POCl3 (108 cm2 V−1 s−1) with respect to N2O (19 cm2 V−1 s−1), accompanying a reduction of the interface traps density. Hence, a different temperature coefficient of the mobility and of the threshold voltage was observed in the two cases. According to structural analysis, the gate oxide subjected to PDA in POCl3 showed a different surface morphology than that treated in N2O, as a consequence of the strong incorporation of phosphorous inside the SiO2 matrix during annealing. This latter explained the instability of the electrical behavior of MOS capacitors annealed in POCl3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Roccaforte, F. Giannazzo, F. Iucolano, J. Eriksson, M.H. Weng, V. Raineri, Appl. Surf. Sci. 256, 5727 (2010)

    Article  ADS  Google Scholar 

  2. M. Shur, S. Rumyanstev, M. Levinshtein, SiC Materials and Devices, vol. 1 (World Scientific, Singapore, 2006)

    Google Scholar 

  3. H. Okumura, Jpn. J. Appl. Phys. 45, 7565 (2006)

    Article  ADS  Google Scholar 

  4. B.J. Baliga, Silicon Carbide Power Devices (World Scientific, Singapore, 2005)

    Google Scholar 

  5. K. Matocha, Solid-State Electron. 52, 1631 (2008)

    Article  ADS  Google Scholar 

  6. J. Millán, IET Circuits Devices Syst. 1, 372 (2007)

    Article  Google Scholar 

  7. M.K. Das, Mater. Sci. Forum 457–460, 1275 (2004)

    Article  Google Scholar 

  8. S.-H. Ryu, S. Dhar, S. Haney, A. Agarwal, A. Lelis, B. Geil, C. Scozzie, Mater. Sci. Forum 615–617, 743 (2009)

    Article  Google Scholar 

  9. www.cree.com

  10. V.V. Afanas’ev, F. Ciobanu, S. Dimitrijev, G. Pensl, A. Stesmans, J. Phys. Condens. Matter 16, S1839–S1856 (2004)

    Article  ADS  Google Scholar 

  11. F. Ciobanu, G. Pensl, V.V. Afanas’ev, A. Schöner, Mater. Sci. Forum 483–485, 693 (2005)

    Article  Google Scholar 

  12. E. Arnold, D. Alok, IEEE Trans. Electron Devices 48, 1870 (2001)

    Article  ADS  Google Scholar 

  13. N.S. Saks, A.K. Agarwal, Appl. Phys. Lett. 77, 3281 (2000)

    Article  ADS  Google Scholar 

  14. H. Li, S. Dimitrijev, H.B. Harrison, D. Sweatman, Appl. Phys. Lett. 70, 2028 (1997)

    Article  ADS  Google Scholar 

  15. G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, M. Di Ventra, S.T. Pantelides, L.C. Feldman, R.A. Weller, Appl. Phys. Lett. 76, 1713 (2000)

    Article  ADS  Google Scholar 

  16. L.A. Lipkin, M.K. Das, J.W. Palmour, Mater. Sci. Forum 389–393, 985 (2002)

    Article  Google Scholar 

  17. C.-Y. Lu, J.A. Cooper, T. Tsuji, G. Chung, J.R. Williams, K. McDonald, L.C. Feldman, IEEE Trans. Electron Devices 50, 1582 (2003)

    Article  ADS  Google Scholar 

  18. G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, Electron Device Lett. 22, 176 (2001)

    Article  ADS  Google Scholar 

  19. D. Okamoto, H. Yano, K. Hirata, T. Hatayama, T. Fuyuki, IEEE Electron Device Lett. 31, 710 (2010)

    Article  ADS  Google Scholar 

  20. L.K. Swanson, P. Fiorenza, F. Giannazzo, A. Frazzetto, F. Roccaforte, Appl. Phys. Lett. 101, 193501 (2012)

    Article  ADS  Google Scholar 

  21. F. Giannazzo, F. Roccaforte, V. Raineri, Appl. Phys. Lett. 91, 202104 (2007)

    Article  ADS  Google Scholar 

  22. A. Frazzetto, F. Giannazzo, R. Lo Nigro, V. Raineri, F. Roccaforte, J. Phys. D, Appl. Phys. 44, 255302 (2011)

    Article  ADS  Google Scholar 

  23. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, Hoboken, 2006)

    Google Scholar 

  24. H. Yoshioka, T. Nakamura, T. Kimoto, J. Appl. Phys. 112, 024520 (2012)

    Article  ADS  Google Scholar 

  25. A. Pérez-Tomás, P. Brosselard, P. Godignon, J. Millán, N. Mestres, M.R. Jennings, J.A. Covington, P.A. Mawby, J. Appl. Phys. 100, 114508 (2006)

    Article  ADS  Google Scholar 

  26. S. Dhar, S. Haney, L. Cheng, S.R. Ryu, A.K. Agarwa, L.C. Yu, K.P. Cheung, J. Appl. Phys. 108, 054509 (2010)

    Article  ADS  Google Scholar 

  27. A. Frazzetto, F. Giannazzo, P. Fiorenza, V. Raineri, F. Roccaforte, Appl. Phys. Lett. 99, 072117 (2011)

    Article  Google Scholar 

  28. H. Nakagawa, S. Tanaka, I. Suemune, Phys. Rev. Lett. 91, 226107 (2003)

    Article  ADS  Google Scholar 

  29. M. Camarda, A. Severino, P. Fiorenza, V. Raineri, S. Scalese, C. Bongiorno, A. La Magna, F. La Via, M. Mauceri, D. Crippa, Mater. Sci. Forum 679–680, 358 (2011)

    Article  Google Scholar 

  30. P. Fiorenza, F. Giannazzo, A. Frazzetto, F. Roccaforte, J. Appl. Phys. 112, 084501 (2012)

    Article  ADS  Google Scholar 

  31. P. Fiorenza, F. Giannazzo, L.K. Swanson, A. Frazzetto, S. Lorenti, M.S. Alessandrino, F. Roccaforte, Beilstein J. Nanotechnol. 4, 249 (2013)

    Article  Google Scholar 

  32. S.M. Sze, VLSI Technology (McGraw-Hill, Singapore, 1988)

    Google Scholar 

  33. G.C. Schwartz, K.W. Srikrishnan (eds.), Handbook of Semiconductor Interconnection Technology, 2nd edn. (Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

  34. D.L. Griscom, E.J. Friebele, K.J. Long, J.W. Fleming, J. Appl. Phys. 54, 3743 (1983)

    Article  ADS  Google Scholar 

  35. E.H. Snow, B.E. Deal, J. Electrochem. Soc. 113, 263 (1966)

    Article  Google Scholar 

  36. Y.K. Sharma, A.C. Ahyi, T. Isaacs-Smith, A. Modic, M. Park, Y. Xu, E.L. Garfunkel, S. Dhar, L.C. Feldman, J.R. Williams, IEEE Electron Device Lett. 34, 175 (2013)

    Article  ADS  Google Scholar 

  37. R.K. Chanana, J. Appl. Phys. 109, 104508 (2011)

    Article  ADS  Google Scholar 

  38. H. Watanabe, T. Kirino, Y. Kagei, J. Harries, A. Yoshigoe, Y. Teraoka, S. Mitani, Y. Nakano, T. Nakamura, T. Hosoi, T. Shimura, Mater. Sci. Forum 679–680, 386 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Marie Curie ITN NetFISiC (EC FP7 grant agreement n. 264613), by the LAST POWER project (ENIAC Joint Undertaking grant agreement n. 120218), and by ST Microelectronics – Catania (under the research contract 04.03.2011.002 D.B. Legal Dept. 3774).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Roccaforte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiorenza, P., Swanson, L.K., Vivona, M. et al. Comparative study of gate oxide in 4H-SiC lateral MOSFETs subjected to post-deposition-annealing in N2O and POCl3 . Appl. Phys. A 115, 333–339 (2014). https://doi.org/10.1007/s00339-013-7824-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7824-y

Keywords

Navigation