Skip to main content
Log in

The model oxidation catalyst α-V2O5: insights from contactless in situ microwave permittivity and conductivity measurements

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The in situ microwave cavity perturbation technique was used to study the complex permittivity and conductivity of polycrystalline α-V2O5 in a tubular reactor under reactive high-temperature conditions with a TM110 cavity resonating at 9.2 GHz. The sample was investigated at 400 °C in flowing air and air/n-butane mixtures while simultaneously measuring the total oxidation products CO and CO2 by gas chromatography. The V2O5 powder was identified as an n-type semiconductor and the dynamic microwave conductivity correlated well with the near-infrared (NIR) absorption assigned to V3d1 band gap states. Correlations between catalytic performance, real and imaginary parts of the permittivity, and NIR absorption allowed the differentiation between bulk and surface contributions to the charge transport in reactive atmospheres. The stability of the crystalline bulk phase was proven by in situ powder X-ray diffractometry for all applied testing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.A. Goodwin, P. Mark, Prog. Surf. Sci. 1, 1 (1971)

    Article  ADS  Google Scholar 

  2. S.R. Morrison, The Chemical Physics of Surfaces (Plenum, New York, 1977)

    Book  Google Scholar 

  3. J. Haber, Catal. Today 142, 100 (2009)

    Article  Google Scholar 

  4. F. Cavani, Catal. Today 157, 8 (2010)

    Article  Google Scholar 

  5. N. Ballarini, F. Cavani, C. Cortelli, S. Ligi, F. Pierelli, F. Trifiro, C. Fumagalli, G. Mazzoni, T. Monti, Top. Catal. 38, 147 (2006)

    Article  Google Scholar 

  6. R. Schlögl, Top. Catal. 54, 627 (2011)

    Article  Google Scholar 

  7. M.S. Sze, K.K. Ng, Metal semiconductor contacts, in Physics of Semiconductor Devices (Wiley Interscience, New York, 2007)

    Google Scholar 

  8. M. Eichelbaum, R. Stößer, A. Karpov, C.K. Dobner, F. Rosowski, A. Trunschke, R. Schlögl, Phys. Chem. Chem. Phys. 14, 1302 (2012)

    Article  Google Scholar 

  9. G. Fischerauer, M. Spörl, A. Gollwitzer, M. Wedemann, R. Moos, Frequenz 62, 180 (2008)

    Article  ADS  Google Scholar 

  10. M. Eichelbaum, M. Hävecker, C. Heine, A. Karpov, C.-K. Dobner, F. Rosowski, A. Trunschke, R. Schlögl, Angew. Chem., Int. Ed. Engl. 51, 6246 (2012)

    Article  Google Scholar 

  11. P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593 (1931)

    Google Scholar 

  12. L. Chen, C. Ong, C. Neo, V. Varadan, V. Varadan, Microwave Electronics: Measurement and Materials Characterization (Wiley, New York, 2004)

    Book  Google Scholar 

  13. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1960)

    MATH  Google Scholar 

  14. H. Looyenga, Physica 31, 401 (1965)

    Article  ADS  Google Scholar 

  15. D.C. Dube, J. Phys. D, Appl. Phys. 3, 1648 (1970)

    Article  ADS  Google Scholar 

  16. W. Bauhofer, J. Phys. E, Sci. Instrum. 14, 934 (1981)

    Article  ADS  Google Scholar 

  17. M. Heber, W. Gränert, J. Phys. Chem. B 104, 5288 (2000)

    Article  Google Scholar 

  18. C. Sanchez, M. Henry, J.C. Grenet, J. Livage, J. Phys. C, Solid State Phys. 15, 7133 (1982)

    Article  ADS  Google Scholar 

  19. N. Kenny, C. Kannewurf, D. Whitmore, J. Phys. Chem. Solids 27, 1237 (1966)

    Article  ADS  Google Scholar 

  20. V.A. Ioffe, I.B. Patrina, Phys. Status Solidi B 40, 389 (1970)

    Article  ADS  Google Scholar 

  21. L. Fiermans, P. Clauws, W. Lambrecht, L. Vandenbroucke, J. Vennik, Phys. Status Solidi A 59, 485 (1980)

    Article  ADS  Google Scholar 

  22. H. Clark, D. Berets, in Proceedings of the International Congress on Catalysis, ed. by A. Farkas. Advances in Catalysis, vol. 9 (Academic Press, San Diego, 1957), pp. 204–214

    Chapter  Google Scholar 

  23. G. Simard, J. Steger, R. Arnott, L. Siegel, Ind. Eng. Chem. 47, 1424 (1955)

    Article  Google Scholar 

  24. M. Eichelbaum, R. Glaum, M. Hävecker, K. Wittich, C. Heine, H. Schwarz, C.-K. Dobner, C. Welker-Nieuwoudt, A. Trunschke, R. Schlögl, ChemCatChem 5 (2013). doi:10.1002/cctc.201200953

  25. W.M. Haynes (ed.), CRC Handbook of Chemistry and Physics, 93rd edn. (CRC, Boca Raton, 2012)

    Google Scholar 

  26. I. Corvin, L. Cartz, J. Am. Ceram. Soc. 48, 328 (1965)

    Article  Google Scholar 

  27. C.Q. Granqvist (ed.), Handbook of Inorganic Electrochromic Materials (Elsevier Science, Amsterdam, 2002)

    Google Scholar 

  28. Y.P. Varshni, Physica 34, 149 (1967)

    Article  ADS  Google Scholar 

  29. W.N. Delgass, G.L. Haller, R. Kellerman, J.H. Lunsford, Spectroscopy in Heterogeneous Catalysis (Academic Press, New York, 1979)

    Google Scholar 

  30. P. Clauws, J. Vennik, Phys. Status Solidi B 66, 553 (1974)

    Article  ADS  Google Scholar 

  31. Q.-H. Wu, A. Thissen, W. Jaegermann, M. Liu, Appl. Surf. Sci. 236, 473 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. R. Stößer (HU Berlin) for his continuing support of our microwave activities. Financial support by the German Federal Ministry of Education and Research (BMBF) within the framework of the ReAlSelOx project (Fkz 033R028) and by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Eichelbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heine, C., Girgsdies, F., Trunschke, A. et al. The model oxidation catalyst α-V2O5: insights from contactless in situ microwave permittivity and conductivity measurements. Appl. Phys. A 112, 289–296 (2013). https://doi.org/10.1007/s00339-013-7800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7800-6

Keywords

Navigation