Skip to main content
Log in

An analytical model of anisotropic low-field electron mobility in wurtzite indium nitride

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a theoretical analysis of anisotropic transport properties and develops an anisotropic low-field electron analytical mobility model for wurtzite indium nitride (InN). For the different effective masses in the Γ–A and Γ–M directions of the lowest valley, both the transient and steady state transport behaviors of wurtzite InN show different transport characteristics in the two directions. From the relationship between velocity and electric field, the difference is more obvious when the electric field is low in the two directions. To make an accurate description of the anisotropic transport properties under low field, for the first time, we present an analytical model of anisotropic low-field electron mobility in wurtzite InN. The effects of different ionized impurity scattering models on the low-field mobility calculated by Monte Carlo method (Conwell–Weisskopf and Brooks–Herring method) are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.M. Polyakov, F. Schwierz, F. Fuchs, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 94, 022102 (2009)

    Article  ADS  Google Scholar 

  2. M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, P.P. Ruden, IEEE Trans. Electron Devices 48, 535–542 (2001)

    Article  ADS  Google Scholar 

  3. I. Wilke, Y.J. Ding, T.V. Shubina, Optically- and electrically-stimulated terahertz radiation emission from indium nitride. J. Infrared Millim. Terahertz Waves 33, 559–592 (2012)

    Article  Google Scholar 

  4. G. Matthäus, V. Cimalla, B. Pradarutti, S. Riehemann, G. Notni, V. Lebedev, O. Ambacher, S. Nolte, A. Tünnermann, Opt. Commun. 281, 3776–3780 (2008)

    Article  ADS  Google Scholar 

  5. G. Xu, G. Sun, Y.J. Ding, I.B. Zotova, M. Jamil, I.T. Ferguson, J. Appl. Phys. 109, 093111 (2011)

    Article  ADS  Google Scholar 

  6. R. Calarco, Materials 5, 2137–2150 (2012)

    Article  ADS  Google Scholar 

  7. P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Phys. Rev. B 77, 075202 (2008)

    Article  ADS  Google Scholar 

  8. Y.-M. Changa, H.W. Chu, C.-H. Shen, H.-Y. Chen, S. Gwo, Appl. Phys. Lett. 90, 072111 (2007)

    Article  ADS  Google Scholar 

  9. N.A. Masyukov, A.V. Dmitriev, J. Appl. Phys. 109, 023706 (2011)

    Article  ADS  Google Scholar 

  10. N. Ma, X.Q. Wang, S.T. Liu, G. Chen, J.H. Pan, L. Feng, F.J. Xu, N. Tang, B. Shen, Appl. Phys. Lett. 98, 192114 (2011)

    Article  ADS  Google Scholar 

  11. S. Wang, H. Liu, B. Gao, H. Cai, Appl. Phys. Lett. 100, 142105 (2012)

    Article  ADS  Google Scholar 

  12. R.E. Jones, S.X. Li, E.E. Haller, H.C.M. van Genuchten, K.M. Yu, J.W. Ager III., Z. Liliental-Weber, W. Walukiewicz, H. Lu, W.J. Schaff, Appl. Phys. Lett. 90, 162103 (2007)

    Article  ADS  Google Scholar 

  13. T. Inushima, M. Higashiwaki, T. Matsui, Phys. Rev. B 68, 235204 (2003)

    Article  ADS  Google Scholar 

  14. T. Hofmann, T. Chavdarov, V. Darakchieva, H. Lu, W.J. Schaff, M. Schubert, Phys. Status Solidi C 3, 1854 (2006)

    Article  ADS  Google Scholar 

  15. Y.-M. Changa, H.W. Chu, C.-H. Shen, H.-Y. Chen, S. Gwo, Appl. Phys. Lett. 90, 072111 (2007)

    Article  ADS  Google Scholar 

  16. E. Conwell, V.P. Weisskopf, Phys. Rev. 77, 388 (1950)

    Article  ADS  MATH  Google Scholar 

  17. V.M. Polyakov, F. Schwierz, Appl. Phys. Lett. 88, 032101 (2006)

    Article  ADS  Google Scholar 

  18. H. Brooks, C. Herring, Phys. Rev. 83, 879 (1951)

    Google Scholar 

  19. D. Chattopadhyay, H.J. Queisser, Rev. Mod. Phys. 53, 745–768 (1981)

    Article  ADS  Google Scholar 

  20. C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645–705 (1983)

    Article  ADS  Google Scholar 

  21. D.K. Ferry, J.R. Barker, J. Appl. Phys. 52, 818–824 (1981)

    Article  ADS  Google Scholar 

  22. C. Jacoboni, Theory of Electron Transport (Springer, Berlin, 2011)

    Google Scholar 

  23. N. Khan, A. Sedhain, J. Li, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 92, 172101 (2008)

    Article  ADS  Google Scholar 

  24. S. Vitanov, V. Palankovski, in Narrow Gap Semiconductors 2007, Proceedings of the 13th International Conference, Guildford, UK, 8–12 July 2007, pp. 97–100

    Google Scholar 

  25. N. Khan, A. Sedhain, J. Li, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 92, 172101 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Project of National Natural Science Foundation of China (Grant Nos. 60976068, 61076097) and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20110203110012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Liu, H., Song, X. et al. An analytical model of anisotropic low-field electron mobility in wurtzite indium nitride. Appl. Phys. A 114, 1113–1117 (2014). https://doi.org/10.1007/s00339-013-7798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7798-9

Keywords

Navigation