Skip to main content
Log in

Influence of TiO2 nanotube morphology and TiCl4 treatment on the charge transfer in dye-sensitized solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cells (DSSCs) were fabricated using TiO2 nanoparticles (NPs), TiO2 nanotube arrays (NTAs), and surface-modified NTAs with a TiCl4 treatment. The photovoltaic efficiencies of the DSSCs using TiO2 NP, NTA, and TiCl4-treated NTA electrodes are 4.25, 4.74, and 7.47 %, respectively. The highest performance was observed with a TiCl4-treated TiO2 NTA photoanode, although in the case of the latter two electrodes, the amounts of N719 dye adsorbed were similar and 68 % of that of the NP electrode. Electrochemical impedance measurements show that the overall resistance, including the charge–transfer resistance, was smaller with NTA morphologies than with NP morphologies. We suggest that a different electron transfer mechanism along the one-dimensional nanostructure of the TiO2 NTAs contributes to the smaller charge–transfer resistance, resulting in a higher short circuit current (J sc), even at lower dye adsorption. Furthermore, the TiCl4-treated NTAs showed even smaller charge–transfer resistance, resulting in the highest J sc value, because the downward shift in the conduction band edge improves the electron injection efficiency from the excited dye into the TiCl4-treated TiO2 electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. J.-H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.-E. Moser, C. Yi, Md.K. Nazeeruddin, M. Grätzel, Science 334, 629 (2011)

    Article  ADS  Google Scholar 

  3. J.D. Roy-Mayhew, G. Boschloo, A. Hagfeldt, I.A. Aksay, ACS Appl. Mater. Interfaces 4, 2794 (2012)

    Article  Google Scholar 

  4. L. Zhang, H.K. Mulmudi, S.K. Batabyal, Y.M. Lam, S.G. Mhaisalkara, Phys. Chem. Chem. Phys. 14, 9906 (2012)

    Article  Google Scholar 

  5. H.-P. Wu, Z.-W. Ou, T.-Y. Pan, C.-M. Lan, W.-K. Huang, H.-W. Lee, N.M. Reddy, C.-T. Chen, W.-S. Chao, C.-Y. Yeh, E.W.-G. Diau, Energy Environ. Sci. 5, 9843 (2012)

    Article  Google Scholar 

  6. J.A. Anta, E. Guillen, R. Tena-Zaera, J. Phys. Chem. C 116, 11413 (2012)

    Article  Google Scholar 

  7. M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, B. Hardin, C.A. Grimes, Nanotechnology 17, 1446 (2006)

    Article  ADS  Google Scholar 

  8. K.-H. Chung, Md.M. Rahman, H.-S. Son, J.-J. Lee, Int. J. Photoenergy 2012, 215802 (2012)

    Article  Google Scholar 

  9. W. Shao, F. Gu, L. Gai, C. Li, Chem. Commun. 47, 5046 (2011)

    Article  Google Scholar 

  10. K.Y. Cheung, C.T. Yip, A.B. Djurišić, Y.H. Leung, W.K. Chan, Adv. Funct. Mater. 17, 555 (2007)

    Article  Google Scholar 

  11. P.M. Sommeling, B.C. O’Regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits, J.M. Kroon, J.A.M. van Roosmalen, J. Phys. Chem. B 110, 19191 (2006)

    Article  Google Scholar 

  12. J. Li, F. Meng, S. Suri, W. Ding, F. Huang, N. Wu, Chem. Commun. 48, 8213 (2012)

    Article  Google Scholar 

  13. S. Senthilarasu, T.A.N. Peiris, J. García-Cañadas, K.G.U. Wijayantha, J. Phys. Chem. C 116, 19053 (2012)

    Article  Google Scholar 

  14. J. Ma, L. Xu, L. Xu, H. Wang, S. Xu, H. Li, S. Xie, H. Li, ACS Catal. 3, 985 (2013)

    Article  Google Scholar 

  15. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, Nanoscale 2, 45 (2010)

    Article  ADS  Google Scholar 

  16. P.-T. Hsiao, Y.-J. Liou, H. Teng, J. Phys. Chem. C 115, 15018 (2011)

    Article  Google Scholar 

  17. N. Kopidakis, K.D. Benkstein, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 107, 11307 (2003)

    Article  Google Scholar 

  18. N. Kopidakis, E.A. Schiff, N.-G. Park, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 104, 3930 (2000)

    Article  Google Scholar 

  19. Q. Wang, S. Ito, M. Graltzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, J. Phys. Chem. B 110, 25210 (2006)

    Article  Google Scholar 

  20. J. Bisquert, A. Zaban, P. Salvador, J. Phys. Chem. B 106, 8774 (2002)

    Article  Google Scholar 

  21. C.T. Yip, C.S.K. Mak, A.B. Djurišić, Y.F. Hsu, W.K. Chan, Appl. Phys. A 92, 589 (2008)

    Article  ADS  Google Scholar 

  22. B.C. O’Regan, J.R. Durrant, P.M. Sommeling, N.J. Bakker, J. Phys. Chem. C 111, 14001 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Institute of Science and Technology (KIST) institutional program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oh-Shim Joo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Chae, S.Y., Hwang, Y.J. et al. Influence of TiO2 nanotube morphology and TiCl4 treatment on the charge transfer in dye-sensitized solar cells. Appl. Phys. A 112, 733–737 (2013). https://doi.org/10.1007/s00339-013-7786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7786-0

Keywords

Navigation