Skip to main content
Log in

Phase change and stress wave in picosecond laser–material interaction with shock wave formation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

When background gas is present in pulsed laser–material interaction, a shock wave down to the nanoscale will emerge. The background gas will affect the phase change and explosion in the target. This study is focused on the void dynamics and stress wave in a model material (argon crystal) under picosecond pulsed laser irradiation. Our results show that existence of ambient gas and the shock wave significantly suppresses the void formation and their lifetime. Void dynamics, including their growing rate, lifetime, and size under the influence of ambient gas are studied in detail. All the voids undergo an accelerating and decelerating process in the growth. The collapsing process is almost symmetrical to the growing process. Higher laser fluence is found to induce an obvious foamy structure. Stress wave formation and propagation, temperature contour, and target and gas atom number densities are studied to reveal the underlying physical processes. Although the interaction of the plume with ambient gas significantly suppresses the void formation and phase explosion, no obvious effect is found on the stress wave within the target. Very interestingly, secondary stress waves resulting from re-deposition of ablated atoms and void collapse are observed, although their magnitude is much smaller than the directly laser-induced stress wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Seng, M. Drancourt, F. Gouriet, B. La Scola, P.E. Fournier, J.M. Rolain, D. Raoult, Clin. Infect. Dis. 49, 543 (2009)

    Article  Google Scholar 

  2. M.N.R. Ashfold, F. Claeyssens, G.M. Fuge, S.J. Henley, Chem. Soc. Rev. 33, 23 (2004)

    Article  Google Scholar 

  3. K.H. Song, X.F. Xu, Appl. Surf. Sci. 127, 111 (1998)

    Article  ADS  Google Scholar 

  4. H.K. Park, C.P. Grigoropoulos, C.C. Poon, A.C. Tam, Appl. Phys. Lett. 68, 596 (1996)

    Article  ADS  Google Scholar 

  5. O. Yavas, P. Leiderer, H.K. Park, C.P. Grigoropoulos, C.C. Poon, W.P. Leung, N. Do, A.C. Tam, Appl. Phys. A 58, 407 (1994)

    Article  ADS  Google Scholar 

  6. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Appl. Phys. 93, 2380 (2003)

    Article  ADS  Google Scholar 

  7. D.B. Geohegan, Thin Solid Films 220, 138 (1992)

    Article  ADS  Google Scholar 

  8. S. Amoruso, R. Bruzzese, M. Vitiello, N.N. Nedialkov, P.A. Atanasov, J. Appl. Phys. 98, 044907 (2005)

    Article  ADS  Google Scholar 

  9. X.W. Wang, X.F. Xu, J. Heat Transf. 124, 265 (2002)

    Article  Google Scholar 

  10. L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman, Chem. Rev. 103, 321 (2003)

    Article  Google Scholar 

  11. L. Zhang, X. Wang, Appl. Surf. Sci. 255, 3097 (2008)

    Article  ADS  Google Scholar 

  12. L.V. Zhigilei, B.J. Garrison, Appl. Phys. Lett. 71, 551 (1997)

    Article  ADS  Google Scholar 

  13. L.V. Zhigilei, Appl. Phys. A 76, 339 (2003)

    Article  ADS  Google Scholar 

  14. J.N. Leboeuf, K.R. Chen, J.M. Donato, D.B. Geohegan, C.L. Liu, A.A. Puretzky, R.F. Wood, Phys. Plasmas 3, 2203 (1996)

    Article  ADS  Google Scholar 

  15. X. Feng, X. Wang, Phys. Lett. A 369, 323 (2007)

    Article  ADS  Google Scholar 

  16. C. Porneala, D.A. Willis, Appl. Phys. Lett. 89, 211121 (2006)

    Article  ADS  Google Scholar 

  17. S. Gacek, X. Wang, Appl. Phys. A 94, 675 (2009)

    Article  ADS  Google Scholar 

  18. L. Zhang, X. Wang, Jpn. J. Appl. Phys. 47, 964 (2008)

    Article  ADS  Google Scholar 

  19. S. Gacek, X. Wang, J. Appl. Phys. 104, 126101 (2008)

    Article  ADS  Google Scholar 

  20. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  MATH  Google Scholar 

  21. X. Wang, J. Phys. D, Appl. Phys. 38, 1805 (2005)

    Article  ADS  Google Scholar 

  22. L.V. Zhigilei, B.J. Garrison, Mater. Res. Soc. Symp. Proc. 538, 491 (1999)

    Article  Google Scholar 

  23. A. Miotello, R. Kelly, Appl. Phys. Lett. 67, 3535 (1995)

    Article  ADS  Google Scholar 

  24. L.V. Zhigilei, B.J. Garrison, J. Appl. Phys. 88, 1281 (2000)

    Article  ADS  Google Scholar 

  25. X. Wang, J. Heat Transf. 126, 355 (2004)

    Article  Google Scholar 

  26. X. Wang, X. Xu, Int. J. Heat Mass Transf. 46, 45 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Support of this work by the National Science Foundation (No. CMMI-1029072) is gratefully acknowledged. X.W. thanks the great support of the ‘Taishan Foreign Scholar’ program of Shandong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Zhang, J. & Wang, X. Phase change and stress wave in picosecond laser–material interaction with shock wave formation. Appl. Phys. A 112, 677–687 (2013). https://doi.org/10.1007/s00339-013-7770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7770-8

Keywords

Navigation