Skip to main content
Log in

Dielectric relaxation of samarium aluminate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A ceramic SmAlO3 (SAO) sample is synthesized by the solid-state reaction technique. The Rietveld refinement of the X-ray diffraction pattern has been done to find the crystal symmetry of the sample at room temperature. An impedance spectroscopy study of the sample has been performed in the frequency range from 50 Hz to 1 MHz and in the temperature range from 313 K to 573 K. Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The Cole–Cole model is used to analyze the dielectric relaxation mechanism in SAO. The temperature-dependent relaxation times are found to obey the Arrhenius law having an activation energy of 0.29 eV, which indicates that polaron hopping is responsible for conduction or dielectric relaxation in this material. The complex impedance plane plot of the sample indicates the presence of both grain and grain-boundary effects and is analyzed by an electrical equivalent circuit consisting of a resistance and a constant-phase element. The frequency-dependent conductivity spectra follow a double-power law due to the presence of two plateaus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.D. Cashion, A.H. Cooke, M.J.M. Leask, T.L. Thorp, M.R. Wells, J. Mater. Sci. 3, 402 (1968)

    Article  ADS  Google Scholar 

  2. W.K. Anderson, in Nuclear Applications of Yttrium and Lanthanum, ed. by F.H. Spedding, A.H. Daane (Krieger, New York, 1971), p. 522

    Google Scholar 

  3. S.K. Behera, P.K. Sahu, S.K. Pratihar, S. Bhattacharyya, Mater. Lett. 58, 3710 (2004)

    Article  Google Scholar 

  4. L. Vasylechko, A. Senyshyn, U. Bismayer, in Handbook on the Physics and Chemistry of Rare Earths, ed. by K.A. Gschneidner Jr., J.-C.G. Bünzli, V.K. Pecharsky (North-Holland, Amsterdam, 2009), pp. 113–295

    Google Scholar 

  5. C.L. Huang, Y.C. Chen, Mater. Res. Bull. 37, 563 (2002)

    Article  Google Scholar 

  6. JCPDS Card No. 71-1597

  7. L.O. Vasylechko, Crystal chemistry and phase transitions in complex oxides of Rare-Earth elements with perovskite structure. Dr. Sci. Thesis, The Ivan Franko Natl. Univ., Lviv, 2005, p. 343 (in Ukrainian)

  8. P.A. Arsenev, L.M. Kovba, Kh.S. Bagdasarov, B.F. Dzhurinskii, A.V. Potemkin, B.I. Pokrovskii, F.M. Spiridonov, A.V. Antonov, V.V. Ilyukhin, Compounds of Rare Earth Elements. Systems with the Oxides of I–III Group Elements (Nauka, Moscow, 1983), p. 280

    Google Scholar 

  9. J. Coutures, J.P. Coutures, J. Solid State Chem. 52, 95 (1984)

    Article  ADS  Google Scholar 

  10. A. Yoshikawa, A. Saitow, H. Horiuchi, T. Shishido, T. Fukuda, J. Alloys Compd. 266, 104 (1998)

    Article  Google Scholar 

  11. H.M. O’Bryan, P.K. Gallagher, G.W. Berkstresser, C.D. Braudle, J. Mater. Res. 5, 183 (1990)

    Article  ADS  Google Scholar 

  12. S.Y. Cho, I.T. Kim, K.S. Hong, J. Mater. Res. 14, 114 (1999)

    Article  ADS  Google Scholar 

  13. T. Tsuji, Y. Ohashi, Y. Yamamura, Solid State Ion. 541, 154–155 (2002)

    Google Scholar 

  14. P.M. Woodward, Acta Crystallogr., Sect. B, Struct. Crystallogr. Cryst. Chem. 53, 44 (1997)

    Article  Google Scholar 

  15. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 342 (1941)

    ADS  Google Scholar 

  16. P. Thongbai, S. Tangwancharoen, T. Yamwong, S. Maensiri, J. Phys. Condens. Matter 20, 395227 (2008)

    Article  ADS  Google Scholar 

  17. D. Ming, J.M. Reau, J. Ravez, J. Gitae, P. Hagenmuller, J. Solid State Chem. 116, 185 (1995)

    Article  ADS  Google Scholar 

  18. C. Karthik, K.B.R. Varma, J. Phys. Chem. Solids 67, 2437 (2006)

    Article  ADS  Google Scholar 

  19. Y. Lin, L. Jiang, R. Zhao, C.-W. Nan, Phys. Rev. B 72, 014103 (2005)

    Article  ADS  Google Scholar 

  20. E. Iguchi, K. Ueda, W.H. Jung, Phys. Rev. B 54, 17431 (1996)

    Article  ADS  Google Scholar 

  21. S. Komine, E. Iguchi, J. Phys. Chem. Solids 68, 1504 (2007)

    Article  ADS  Google Scholar 

  22. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiments and Applications (Wiley, New York, 2005)

    Book  Google Scholar 

  23. I. Ahmad, M.J. Akhtar, M. Younas, M. Siddique, M.M. Hasan, J. Appl. Phys. 112, 074105 (2012)

    Article  ADS  Google Scholar 

  24. M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 093704 (2011)

    Article  ADS  Google Scholar 

  25. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

APS acknowledges the Department of Science and Technology for providing financial support through an Inspire Fellowship. Alo Dutta thanks the Department of Science and Technology, Government of India, New Delhi for providing financial support through the DST Fast Track Project under Grant No. SR/FTP/PS-032/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Pradhan Sakhya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakhya, A.P., Dutta, A. & Sinha, T.P. Dielectric relaxation of samarium aluminate. Appl. Phys. A 114, 1097–1104 (2014). https://doi.org/10.1007/s00339-013-7766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7766-4

Keywords

Navigation