Skip to main content
Log in

Investigation of the near field distribution in circular nanostructures using Stokes polarization states

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the near field distribution patterns formed from nanostripe corral and half spiral are investigated. Various near field distribution patterns are generated owning to the interference of propagating surface plasmon waves that emerged from the nanoslits or nanostripe. The half spiral nanoslits are illuminated with Stokes polarizations. Each polarization state shows a different field pattern at different locations on the surface of metal film. This is due to the excitation of surface plasmon waves at different parts of the nanostructures when illuminated with different types of polarization states. The same Stokes polarization states are also illuminated on a nanostripe corral structure. In this case, dipolar field distributions are observed when illuminated with different linear polarization states, while optical vortices are observed for circular polarization. It is believed that these interesting field patterns due to different arrangements of nanostructures could be used for near field imaging and polarization sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.L. Brongersma, R. Zia, J.A. Schuller, Plasmonics—the missing link between nanoelectronics and microphotonics. PIERS Online 3, 360 (2007)

    Article  Google Scholar 

  2. M.J. Riedl, Optical Design Fundamentals for Infrared Systems (SPIE, Bellingham, 2001)

    Book  Google Scholar 

  3. B. Huang, H. Babcock, X. Zhuang, Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010)

    Article  Google Scholar 

  4. D.A.B. Miller, Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009)

    Article  Google Scholar 

  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Heidelberg, 1988)

    Google Scholar 

  6. A. Polman, H.A. Atwater, Plasmonics: optics at nanoscale. Mater. Today 8, 56 (2005)

    Article  Google Scholar 

  7. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature (London) 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  8. J.B. Lassiter, H. Sobhani, J.A. Fan, J. Kundu, F. Capasso, P. Nordlander, N.J. Halas, Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett. 10, 3184–3189 (2010)

    Article  ADS  Google Scholar 

  9. Z. Fang, C. Lin, R. Ma, S. Huang, X. Zhu, Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano 4, 75–82 (2010)

    Article  Google Scholar 

  10. P. Muehlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308, 1607 (2005)

    Article  ADS  Google Scholar 

  11. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  ADS  Google Scholar 

  12. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, G.P. Wiederrecht, Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys. Rev. Lett. 95, 267405 (2005)

    Article  ADS  Google Scholar 

  13. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    Article  ADS  Google Scholar 

  14. L. Yin, V.K. Vlasko-Vlasov, J. Pearson, J.M. Hiller, J. Hua, U. Welp, D.E. Brown, C.W. Kimball, Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5, 1399–1402 (2005)

    Article  ADS  Google Scholar 

  15. A.B. Evlyukhin, S.I. Bozhevolnyi, A.L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, B.N. Chichkov, Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles. Opt. Express 15, 16667–16680 (2007)

    Article  ADS  Google Scholar 

  16. Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, X. Zhu, Plasmonic focusing in symmetry broken nanocorrals. Nano Lett. 11, 893–897 (2011)

    Article  ADS  Google Scholar 

  17. Z. Liu, J.M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, Focusing surface plasmons with a plasmonic lens. Nano Lett. 5, 1726–1729 (2005)

    Article  ADS  Google Scholar 

  18. S. Yang, W. Chen, R.L. Nelson, Q. Zhan, Miniature circular polarization analyzer with spiral plasmonic lens. Opt. Lett. 34, 3047–3049 (2009)

    Article  Google Scholar 

  19. E.D. Palik, Hankbook of Optical Constant of Solids (Academic Press, San Diego, 1985)

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Professor Kenneth B. Crozier from Harvard University for his suggestions and discussions. The authors also wish to acknowledge ASTAR Grants #1021740172 and #12302FG012 for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. H. Khoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoo, E.H., Ahmed, I., Guo, Z. et al. Investigation of the near field distribution in circular nanostructures using Stokes polarization states. Appl. Phys. A 112, 597–603 (2013). https://doi.org/10.1007/s00339-013-7756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7756-6

Keywords

Navigation