Skip to main content
Log in

A new approach to a practical subwavelength resolving microscope

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Superresolution depends on near-field capture and transfer of high spatial frequencies from the scattering object. These evanescent waves are transferred to a near-field image domain using a negative index material. Measuring images with subwavelength scale resolution in the near field by scanning is not practical and ignores inevitable object–lens–image coupling phenomena as well as the need to employ inverse scattering algorithms. An alternative approach based on compressive sampling permits the use of a single fixed detector. Traditionally, in such a system, an image-bearing wavefront is projected onto a series of patterns (= basis functions) and the transmitted light integrated by a lens onto a single-point detector. Image reconstruction is possible by weighting each basis function with its measured coefficient and summing, including basis functions representing evanescent waves. We employ a single fixed detector in the back focal plane of a negative index concave lens and basis functions realized by structured illumination from combinations of a set of discrete sources. We have investigated this as an approach to recover subwavelength scale details about a scattering object and report our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.B. Pendry, Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    Article  ADS  Google Scholar 

  2. X.-X. Liu, A. Alu, J. Nanophotonics 5, 053509 (2011)

    Article  ADS  Google Scholar 

  3. M.A. Fiddy, M.E. Testorf, Opt. Express 14, 2037–2046 (2006)

    Article  ADS  Google Scholar 

  4. A.V. Kuzhuget et al., IEEE Trans. Antennas Propag. 99, 1–12 (2012)

    Google Scholar 

  5. R.S. Ritter, M.A. Fiddy, in Imaging Reconstruction from Incomplete Data VII. Proc. SPIE, vol. 8500, pp. 1–7, August 2012

    Google Scholar 

  6. Z. Liu, V.M. Shalaev, A.V. Kildishev, Appl. Phys. A 107, 83–88 (2012)

    Article  ADS  Google Scholar 

  7. R. Hegde et al., IEEE Trans. Microw. Theory Tech. 59(10), 2612–2623 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  8. C.P. Moore, R.J. Blaikie, M.D. Arnold, Opt. Express 17(16), 14260–14269 (2009)

    Article  ADS  Google Scholar 

  9. R.S. Hegde, Y.L. Hor, W.J.R. Hoefer, Appl. Phys. A 109, 831–834 (2012)

    Article  ADS  Google Scholar 

  10. Z. Jacob, L.V. Alekseyev, E. Narimanov, Opt. Express 14(18), 8247–8256 (2006)

    Article  ADS  Google Scholar 

  11. E. Wolf, Opt. Commun. 1, 153–156 (1969)

    Article  ADS  Google Scholar 

  12. Y. Zhang, Y.-C. Chuang, M.A. Fiddy, Appl. Phys. A 107(1), 61–69 (2011)

    Article  ADS  Google Scholar 

  13. R.S. Hegde, G. Hotan, E.P. Li, W.J.R. Hoefer, M.A. Fiddy, in COMPUMAG 2011 Digest, Sydney, Australia (2011)

    Google Scholar 

  14. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, R. Baraniuk, IEEE Signal Process. Mag. 25(2), 83–91 (2008)

    Article  ADS  Google Scholar 

  15. J. Romberg, IEEE Signal Process. Mag. 25(2), 14–20 (2008)

    Article  ADS  Google Scholar 

  16. D.L. Donoho, IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  17. R. Baraniuk, IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  ADS  Google Scholar 

  18. N.P. Pitsianis, D.J. Brady, A. Portnoy, X. Sun, T. Suleski, M.A. Fiddy, M.R. Feldman, R.D. TeKolste, Proc. SPIE 6232, 62320A (2006)

    Article  ADS  Google Scholar 

  19. R.M. Willett, R.F. Marcia, J.M. Nichols, Opt. Eng. 50(7), 072601 (2011)

    Article  ADS  Google Scholar 

  20. Y.-C. Chuang, R. Dudley, M.A. Fiddy, in Image Reconstruction from Incomplete Data VII. Proc. SPIE, vol. 8500, p. 850009 (2012)

    Chapter  Google Scholar 

  21. E. Candès, J. Romberg, T. Tao, IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  22. E. Candès, T. Tao, IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  Google Scholar 

  23. http://users.ece.gatech.edu/~justin/l1magic/

  24. I.M. Ehrenberg, S.E. Sarma, B.-L. Wu, J. Appl. Phys. 112, 073114 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Singapore, grant number NRF-G-CRP 2007-01. RD and MAF would also like to acknowledge support from the NSF Center for Metamaterials, award number 1068050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-C. Chuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, YC., Dudley, R. & Fiddy, M.A. A new approach to a practical subwavelength resolving microscope. Appl. Phys. A 112, 575–582 (2013). https://doi.org/10.1007/s00339-013-7741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7741-0

Keywords

Navigation