Investigation on a “tentacle-like” corrosion feature on Bronze Age tin-bronze objects

Abstract

Studying the micro-structure of Austrian, Bosnian and Croatian Bronze Age objects made of tin bronze, a rare kind of corrosion feature, called in the following “tentacle-like” according to its specific way of penetrating the metallic matrix, was noted and investigated. Differing from the more classical intergranular, pitting, or crevice corrosion features, the “tentacle-like” corrosion is not following the grain boundaries, nor precisely positioned under the etching area, but penetrates mainly the crystal matrix without any apparent order. This paper discusses the first results achieved and the following hypotheses formulated in respect of the typology of this corrosion. The analyses were carried out by optical microscopy, Raman microspectroscopy, and scanning electron microscopy equipped with EDX spectroscopy for quantitative analyses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    N. Souissi, L. Bousselmi, S. Khosrof, E. Triki, Mater. Corros. 54 (2003)

  2. 2.

    C. Xu, J. Wang, Anti-Corros. Methods Mater. 50 (2003)

  3. 3.

    H. Hassairi, L. Bousselmi, E. Triki, G.M. Ingo, Mater. Corros. 58 (2007)

  4. 4.

    L. Cartechini, R. Rinaldi, W. Kockelmann, S. Bonamore, D. Manconi, I. Borgia, P. Rocchi, B. Brunetti, A. Sgamellotti, Appl. Phys. A 83 (2006). doi:10.1007/s00339-006-3538-8

  5. 5.

    M.P. Casaletto, T. De Caro, G.M. Ingo, C. Riccucci, Appl. Phys. A 83 (2006). doi:10.1007/s00339-006-3545-9

  6. 6.

    L. Robbiola, K. Rahmouni, C. Chiavari, C. Martini, D. Prandstraller, A. Texier, H. Takenouti, P. Vermaut, Appl. Phys. A 92 (2008). doi:10.1007/s00339-008-4468-4

  7. 7.

    I. Constantinides, A. Adriaens, F. Adams, Appl. Surf. Sci. 189 (2002)

  8. 8.

    G.M. Ingo, A. Çilingiroğlu, F. Faraldi, C. Riccucci, M.P. Casaletto, A. Erdem, A. Batmaz, Appl. Phys. A 100 (2010). doi:10.1007/s00339-010-5656-6

  9. 9.

    R.L. Opila, Corros. Sci. 27, 7 (1987)

    Article  Google Scholar 

  10. 10.

    D. de la Fuente, J. Simancas, M. Morcillo, Corros. Sci. 50 (2008)

  11. 11.

    F.J.R. de Oliveira, D.C.B. Lago, L.F. Senna, L.R.M. de Miranda, E. D’Elia, Mater. Chem. Phys. 115 (2009)

  12. 12.

    L. Guadagnini, C. Chiavari, C. Martini, E. Bernardi, L. Morselli, D. Tonelli, Electrochim. Acta 56 (2011)

  13. 13.

    H. Strandberg, Atmos. Environ. 32(20), 3511 (1998)

    ADS  Article  Google Scholar 

  14. 14.

    H. Strandberg, Atmos. Environ. 32(20), 3521 (1998)

    ADS  Article  Google Scholar 

  15. 15.

    T.E. Graedel, K. Nassau, J.P. Franey, Corros. Sci. 27, 7 (1987)

    Google Scholar 

  16. 16.

    T.E. Graedel, Corros. Sci. 27, 7 (1987)

    Google Scholar 

  17. 17.

    L. Veleva, P. Quintana, R. Ramanauskas, R. Pomes, L. Maldonado, Electrochim. Acta 41 (1996)

  18. 18.

    H. Strandberg, L.-G. Johansson, O. Lindqvist, Mater. Corros. 48 (1997)

  19. 19.

    P. Piccardo, B. Mille, L. Robbiola, in Corrosion of Metallic Heritage Artefacts—Investigation, Conservation and Prediction of Long-Term Behaviour, ed. by P. Dillmann, G. Beranger, P. Piccardo, H. Matthiesen (Woodhead, Cambridge, 2007), p. 239

    Google Scholar 

  20. 20.

    L. Robbiola, J.-M. Blengino, C. Fiaud, Corros. Sci. 40 (1998)

  21. 21.

    L. Robbiola, C. Fiaud, Rev. Archéom. 16 (1992)

  22. 22.

    M. Mödlinger, Herstellung und Verwendung Bronzezeitlicher Schwerter Mitteleuropas. Universitätsforschungen zur prähistorischen Archäologie, vol. 193 (Habelt, Bonn, 2011)

    Google Scholar 

  23. 23.

    P. Piccardo, Microscopy & Analysis (Rolston Gordon Communications, Bookham, 2000), p. 63

    Google Scholar 

  24. 24.

    P. Piccardo, M.R. Pinasco, E. Stagno, in Collection Monographies Instrumentum, vol. 5 (1998)

    Google Scholar 

  25. 25.

    D.A. Scott, Copper and Bronze in Art: Corrosion, Colorants, Conservation (The J. Paul Getty Museum in association with Archetype Books, Singapore, 1991), p. 54

    Google Scholar 

  26. 26.

    E. Bernardi, C. Chiavari, B. Lenza, C. Martini, L. Morselli, F. Ospitali, L. Robbiola, Corros. Sci. 51 (2009)

  27. 27.

    B.X. Huang, P. Tornatore, Y.-S. Li, Electrochim. Acta 46 (2000)

  28. 28.

    C.A.C. Sequeira, in Ulhig’s Corrosion Handbook, 3rd edn., ed. by R. Winston Revie. Electrochemical Society Series (Wiley, New York, 2011), p. 757

    Google Scholar 

  29. 29.

    I. Matsushima, in Ulhig’s Corrosion Handbook, 3rd edn., ed. by R. Winston Revie. Electrochemical Society Series (Wiley, New York, 2011), p. 615

    Google Scholar 

  30. 30.

    M. Yokota, F. Sugaya, H. Mifune, Y. Kobori, K. Shimizu, K. Nakai, S. Miyahara, Y. Shimizu, Mater. Trans. 44, 2 (2003)

    Article  Google Scholar 

  31. 31.

    M. Hock, Appl. Geochem. 16 (2001)

  32. 32.

    G.M. Gadd, Sci. Total Environ. 258 (2000)

  33. 33.

    K. Bosecker, FEMS Microbiol. Rev. 20 (1997)

  34. 34.

    Q. Hang, Geomicrobiol. J. 22 (2005)

  35. 35.

    M. Urrutia Mera, T.J. Beveridge, J. Bacteriol. 175, 7 (1993)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Austrian Science Fund (FWF) and the FP7/Marie Curie actions who were supporting the research of Marianne Mödlinger with the Schrödinger-fellowship No. J 3109-G21. Special thanks to the curators of the museums concerned who permitted the sampling of the Bronze Age objects: Jacqueline Balen (Arheološki muzej u Zagrebu, Croatia), Lidia Miklik-Lozuk (Muzej Slavonski Brod, Croatia), Vesna Isabegovic and Nataša Perić (Muzej istočne Bosne posjeduje Tuzla, Bosnia-Herzegovina), Hans Reschreiter und Anton Kern (Naturhistorisches Museum Wien), Gemeinde Langenlois.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paolo Piccardo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Piccardo, P., Mödlinger, M., Ghiara, G. et al. Investigation on a “tentacle-like” corrosion feature on Bronze Age tin-bronze objects. Appl. Phys. A 113, 1039–1047 (2013). https://doi.org/10.1007/s00339-013-7732-1

Download citation

Keywords

  • Cuprous Oxide
  • Metallic Matrix
  • Organotin Compound
  • Corrosion Feature
  • Sulphide Inclusion